Do you want to publish a course? Click here

Inelastic X-ray Scattering Study of Phonons in Superconducting CaC6

358   0   0.0 ( 0 )
 Added by Mary Upton
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the dispersion and temperature dependence of a number of phonons in the recently discovered superconductor CaC6 utilizing inelastic x-ray scattering. Four [00L] and two ab-plane phonon modes are observed, and measured at temperatures both above and below T_c. In general, our measurements of phonon dispersions are in good agreement with existing theoretical calculations of the phonon dispersion. This is significant in light of several discrepancies between experimental measurements of phonon-derived quantities and theoretical calculations. The present work suggests that the origin of these discrepancies lies in the understanding of the electron-phonon coupling in this material, rather than in the phonons themselves.

rate research

Read More

The low energy phonons of two different graphite intercalation compounds (GICs) have been measured as a function of temperature using inelastic x-ray scattering (IXS). In the case of the non-superconductor BaC6, the phonons observed are significantly higher (up to 20 %) in energy than those predicted by theory, in contrast to the reasonable agreement found in superconducting CaC6. Additional IXS intensity is observed below 15 meV in both BaC6 and CaC6. It has been previously suggested that this additional inelastic intensity may arise from defect or vacancy modes in these compounds, unpredicted by theory (dAstuto et al, Phys. Rev. B 81 104519 (2010)). Here it is shown that this additional intensity can arise directly from the large disorder of the available samples. Our results show that future theoretical work is required to understand the relationship between the crystal structure, the phonons and the superconductivity in GICs.
347 - S. E. Hahn , Y. Lee , N. Ni 2009
In the iron pnictides, the strong sensitivity of the iron magnetic moment to the arsenic position suggests a significant relationship between phonons and magnetism. We measured the phonon dispersion of several branches in the high temperature tetragonal phase of CaFe2As2 using inelastic x-ray scattering on single-crystal samples. These measurements were compared to ab initio calculations of the phonons. Spin polarized calculations imposing the antiferromagnetic order present in the low temperature orthorhombic phase dramatically improve agreement between theory and experiment. This is discussed in terms of the strong antiferromagnetic correlations that are known to persist in the tetragonal phase.
In Fe-As based superconductors magnetism and superconductivity show strong sensitivity to the lattice, suggesting a possibility of unconventional electron-phonon coupling. We investigated c-axis polarized phonons in doped and undoped BaFe2As2 by inelastic X-ray scattering. Phonon peak positions and linewidths did not vary significantly as a function of doping either by Co or by K. The linewidth of the Fe vibration shows unusual wavevector-dependence, which may be due to hybridization with in-plane modes. Comparison with the density functional theory shows significant difference for the energy of the As-As vibrations (Raman active at the zone center) but not for the Fe-As vibrations (infrared-active at the zone center). This behavior cannot be explained by a 10% softening of Fe-As interaction strength as proposed previously for in-plane polarized vibrations.
We used resonant inelastic x-ray scattering (RIXS) with and without analysis of the scattered photon polarization, to study dispersive spin excitations in the high temperature superconductor YBa2Cu3O6+x over a wide range of doping levels (0.1 < x < 1). The excitation profiles were carefully monitored as the incident photon energy was detuned from the resonant condition, and the spin excitation energy was found to be independent of detuning for all x. These findings demonstrate that the largest fraction of the spin-flip RIXS profiles in doped cuprates arises from magnetic collective modes, rather than from incoherent particle-hole excitations as recently suggested theoretically [Benjamin et al. Phys. Rev. Lett. 112, 247002(2014)]. Implications for the theoretical description of the electron system in the cuprates are discussed.
Measurements of spin excitations are essential for an understanding of spin-mediated pairing for superconductivity; and resonant inelastic X-ray scattering (RIXS) provides a considerable opportunity to probe high-energy spin excitations. However, whether RIXS correctly measures the collective spin excitations of doped superconducting cuprates remains under debate. Here we demonstrate distinct Raman- and fluorescence-like RIXS excitations of Bi$_{1.5}$Pb$_{0.6}$Sr$_{1.54}$CaCu$_{2}$O$_{8+{delta}}$ in the mid-infrared energy region. Combining photon-energy and momentum dependent RIXS measurements with theoretical calculations using exact diagonalization provides conclusive evidence that the Raman-like RIXS excitations correspond to collective spin excitations, which are magnons in the undoped Mott insulators and evolve into paramagnons in doped superconducting compounds. In contrast, the fluorescence-like shifts are due primarily to the continuum of particle-hole excitations in the charge channel. Our results show that under the proper experimental conditions RIXS indeed can be used to probe paramagnons in doped high-$T_c$ cuprate superconductors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا