This paper and the results therein are geared towards building a basic toolbox for calculations in quantum information theory of quasi-free fermionic systems. Various entropy and relative entropy measures are discussed and the calculation of these reduced to evaluating functions on the one-particle component of quasi-free states. The set of quasi-free affine maps on the state space is determined and fully characterized in terms of operations on one-particle subspaces. For a subclass of trace preserving completely positive maps and for their duals, Choi matrices and Jamiolkowski states are discussed.
We apply the recent results of F. Hiai, M. Mosonyi and T. Ogawa [arXiv:0707.2020, to appear in J. Math. Phys.] to the asymptotic hypothesis testing problem of locally faithful shift-invariant quasi-free states on a CAR algebra. We use a multivariate extension of Szegos theorem to show the existence of the mean Chernoff and Hoeffding bounds and the mean relative entropy, and show that these quantities arise as the optimal error exponents in suitable settings.
Both classical and quantum waves can form vortices: with helical phase fronts and azimuthal current densities. These features determine the intrinsic orbital angular momentum carried by localized vortex states. In the past 25 years, optical vortex beams have become an inherent part of modern optics, with many remarkable achievements and applications. In the past decade, it has been realized and demonstrated that such vortex beams or wavepackets can also appear in free electron waves, in particular, in electron microscopy. Interest in free-electron vortex states quickly spread over different areas of physics: from basic aspects of quantum mechanics, via applications for fine probing of matter (including individual atoms), to high-energy particle collision and radiation processes. Here we provide a comprehensive review of theoretical and experimental studies in this emerging field of research. We describe the main properties of electron vortex states, experimental achievements and possible applications within transmission electron microscopy, as well as the possible role of vortex electrons in relativistic and high-energy processes. We aim to provide a balanced description including a pedagogical introduction, solid theoretical basis, and a wide range of practical details. Special attention is paid to translate theoretical insights into suggestions for future experiments, in electron microscopy and beyond, in any situation where free electrons occur.
This paper is concerned with the concept of {em information state} and its use in optimal feedback control of classical and quantum systems. The use of information states for measurement feedback problems is summarized. Generalization to fully quantum coherent feedback control problems is considered.
We study the behavior of the mutual information (MI) in various quadratic fermionic chains, with and without pairing terms and both with short- and long-range hoppings. The models considered include the short-range Kitaev model and also cases in which the area law for the entanglement entropy is - logarithmically or non-logarithmically - violated. When the area law is violated at most logarithmically, the MI is a monotonically increasing function of the conformal four-point ratio x, also for the Kitaev model. Where non-logarithmic violations of the area law are present, then non-monotonic features of MI can be observed, with a structure of peaks related to the spatial configuration of Bell pairs, and the four-point ratio x is found to be not sufficient to capture the whole structure of the MI. For the model exhibiting perfect volume law, the MI vanishes identically. For the Kitaev model, when it is gapped or the range of the pairing is large enough, then the results have vanishing MI for small x. A discussion of the comparison with the results obtained by the AdS/CFT correspondence in the strong coupling limit is presented.
Quantum teleportation is considered a basic primitive in many quantum information processing tasks and has been experimentally confirmed in various photonic and matter-based setups. Here, we consider teleportation of quantum information encoded in modes of a fermionic field. In fermionic systems, superselection rules lead to a more differentiated picture of entanglement and teleportation. In particular, one is forced to distinguish between single-mode entanglement swapping, and qubit teleportation with or without authentication via Bell inequality violation, as we discuss here in detail. We focus on systems subject to parity superselection where the particle number is not fixed, and contrast them with systems constrained by particle number superselection which are relevant for possible practical implementations. Finally, we analyze the consequences for the operational interpretation of fermionic mode entanglement and examine the usefulness of so-called mixed maximally entangled states for teleportation.