Do you want to publish a course? Click here

AC/DC Susceptibility of the Heavy-Fermion Superconductor CePt3Si under Pressure

111   0   0.0 ( 0 )
 Added by Yoshihiro Aoki
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated the pressure dependence of ac and dc susceptibilities of the heavy-fermion superconductor CePt3Si (Tc= 0.75 K) that coexists with antiferromagnetism (TN = 2.2 K). As hydrostatic pressure is increased, Tc first decreases rapidly, then rather slowly near the critical pressure Pc = 0.6 GPa and shows a stronger decrease again at higher pressures, where Pc is the pressure at which TN becomes zero. A transition width and a difference in the two transition temperatures defined in the form of structures in the out-of-phase component of ac susceptibilities also become small near Pc, indicating that a double transition observed in CePt3Si is caused by some inhomogeneous property in the sample that leads to a spatial variation of local pressure. A sudden increase in the Meissner fraction above Pc suggests the influence of antiferromagnetism on superconductivity.



rate research

Read More

131 - H. Mukuda , T. Ohara , M. Yashima 2009
We report 29Si-NMR study on a single crystal of the heavy-fermion superconductor CeIrSi3 without an inversion symmetry along the c-axis. The 29Si-Knight shift measurements under pressure have revealed that the spin susceptibility for the ab-plane decreases slightly below Tc, whereas along the c-axis it does not change at all. The result can be accounted for by the spin susceptibility in the superconducting state being dominated by the strong antisymmetric (Rashba-type) spin-orbit interaction that originates from the absence of an inversion center along the c-axis and it being much larger than superconducting condensation energy. This is the first observation which exhibits an anisotropy of the spin susceptibility below Tc in the noncentrosymmetric superconductor dominated by strong Rashba-type spin-orbit interaction.
127 - Tuson Park 2008
We report field-orientation specific heat studies of the pressure-induced heavy fermion superconductor CeRhIn5. Theses experiments provide the momentum-dependent superconducting gap function for the first time in any pressure-induced superconductor. In the coexisting phase of superconductivity and antiferromagnetism, field rotation within the Ce-In plane reveals four-fold modulation in the density of states, which favors a d-wave order parameter and constrains a theory of the interplay between superconductivity and magnetism.
We studied the anisotropy of the superconducting upper critical field $H_{rm c2}$ in the heavy-fermion superconductor UTe$_2$ under hydrostatic pressure by magnetoresistivity measurements. In agreement with previous experiments we confirm that superconductivity disappears near a critical pressure $p_{rm c} approx 1.5$~GPa, and a magnetically ordered state appears. The unusual $H_{rm c2}(T)$ at low temperatures for $H parallel a$ suggests that the multiple superconducting phases which appear under pressure have quite different $H_{rm c2}$. For a field applied along the hard magnetization $b$ axis $H_{rm c2} (0)$ is glued to the metamagnetic transition $H_{rm m}$ which is suppressed near $p_{rm c}$. The suppression of $H_{rm m}$ with pressure follows the decrease of temperature $T_{chi}^{rm max}$, at the maximum in the susceptibility along $b$. The strong reinforcement of $H_{rm c2}$ at ambient pressure for $H parallel b$ above 16~T is rapidly suppressed under pressure due to the increase of $T_{rm sc}$ and the decrease of $H_{rm m}$. The change in the hierarchy of the anisotropy of $H_{rm c2}(0)$ on approaching $p_{rm c}$ points out that the $c$ axis becomes the hard magnetization axis.
We have performed high-resolution powder x-ray diffraction measurements on a sample of $^{242}$PuCoGa$_{5}$, the heavy-fermion superconductor with the highest critical temperature $T_{c}$ = 18.7 K. The results show that the tetragonal symmetry of its crystallographic lattice is preserved down to 2 K. Marginal evidence is obtained for an anomalous behaviour below $T_{c}$ of the $a$ and $c$ lattice parameters. The observed thermal expansion is isotropic down to 150 K, and becomes anisotropic for lower temperatures. This gives a $c/a$ ratio that decreases with increasing temperature to become almost constant above $sim$150 K. The volume thermal expansion coefficient $alpha_{V}$ has a jump at $T_{c}$, a factor $sim$20 larger than the change predicted by the Ehrenfest relation for a second order phase transition. The volume expansion deviates from the curve expected for the conventional anharmonic behaviour described by a simple Gr{u}neisen-Einstein model. The observed differences are about ten times larger than the statistical error bars but are too small to be taken as an indication for the proximity of the system to a valence instability that is avoided by the superconducting state.
We investigated the magnetic phase diagram of the first Pr-based heavy fermion superconductor PrOs4Sb12 by means of high-resolution dc magnetization measurements in low temperatures down to 0.06K. The temperature dependence of the magnetization M(T) at 0.1kOe exhibits two distinct anomalies at Tc1=1.83K and Tc2=1.65K, in agreement with the specific heat measurements at zero field. Increasing magnetic field H, both Tc1(H) and Tc2(H) move toward lower temperatures without showing a tendency of intersecting to each other. Above 10kOe, the transition at Tc2(H) appears to merge into a line of the peak effect which is observed near the upper critical field Hc2 in the isothermal M(H) curves, suggesting a common origin for these two phenomena. The presence of the field-induced ordered phase (called phase A here) is confirmed for three principal directions above 40kOe, with the anisotropic A-phase transition temperature TA: TA[100] > TA[111] >TA[110]. The present results are discussed on the basis of crystalline-electrical-field level schemes with a non-magnetic ground state, with emphasis on a Gamma1 singlet as the possible ground state of Pr3+ in PrOs4Sb12.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا