Do you want to publish a course? Click here

On the Emergence of Unstable Modes in an Expanding Domain for Energy-Conserving Wave Equations

84   0   0.0 ( 0 )
 Added by Kody Law
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by recent work on instabilities in expanding domains in reaction-diffusion settings, we propose an analog of such mechanisms in energy-conserving wave equations. In particular, we consider a nonlinear Schr{o}dinger equation in a finite domain and show how the expansion or contraction of the domain, under appropriate conditions, can destabilize its originally stable solutions through the modulational instability mechanism. Using both real and Fourier spacediagnostics, we monitor and control the crossing of the instability threshold and, hence, the activation of the instability. We also consider how the manifestation of this mechanism is modified in a spatially inhomogeneous setting, namely in the presence of an external parabolic potential, which is relevant to trapped Bose-Einstein condensates.



rate research

Read More

455 - R. Marangell , H. Susanto , 2012
A periodically inhomogeneous Schrodinger equation is considered. The inhomogeneity is reflected through a non-uniform coefficient of the linear and non-linear term in the equation. Due to the periodic inhomogeneity of the linear term, the system may admit spectral bands. When the oscillation frequency of a localized solution resides in one of the finite band gaps, the solution is a gap soliton, characterized by the presence of infinitely many zeros in the spatial profile of the soliton. Recently, how to construct such gap solitons through a composite phase portrait is shown. By exploiting the phase-space method and combining it with the application of a topological argument, it is shown that the instability of a gap soliton can be described by the phase portrait of the solution. Surface gap solitons at the interface between a periodic inhomogeneous and a homogeneous medium are also discussed. Numerical calculations are presented accompanying the analytical results.
192 - E. Farhi , N. Graham , A. H. Guth 2008
We consider a (1+1) dimensional scalar field theory that supports oscillons, which are localized, oscillatory, stable solutions to nonlinear equations of motion. We study this theory in an expanding background and show that oscillons now lose energy, but at a rate that is exponentially small when the expansion rate is slow. We also show numerically that a universe that starts with (almost) thermal initial conditions will cool to a final state where a significant fraction of the energy of the universe -- on the order of 50% -- is stored in oscillons. If this phenomenon persists in realistic models, oscillons may have cosmological consequences.
157 - F.R. Klinkhamer 2019
We present evidence that recent numerical results from the reduced classical equations of the Lorentzian IIB matrix model can be interpreted as corresponding to the emergence of an expanding universe. In addition, we propose an effective metric to describe the emerging (3+1)-dimensional spacetime. This metric gives, at all times, finite values for the Ricci and Kretschmann curvature scalars. With these results, we are able to give a heuristic discussion of the origin of the Universe in the context of the IIB matrix model.
We investigate the properties of time reversibility of a soliton gas, originating from a dispersive regularization of a shock wave, as it propagates in a strongly disordered environment. An original approach combining information measures and spin glass theory shows that time reversal focusing occurs for different replicas of the disorder in forward and backward propagation, provided the disorder varies on a length scale much shorter than the width of the soliton constituents. The analysis is performed by starting from a new class of reflectionless potentials, which describe the most general form of an expanding soliton gas of the defocusing nonlinear Schroedinger equation.
We study the limiting behavior of viscous incompressible flows when the fluid domain is allowed to expand as the viscosity vanishes. We describe precise conditions under which the limiting flow satisfies the full space Euler equations. The argument is based on truncation and on energy estimates, following the structure of the proof of Katos criterion for the vanishing viscosity limit. This work complements previous work by the authors, see [Kelliher, Comm. Math. Phys. 278 (2008), 753-773] and [arXiv:0801.4935v1].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا