Do you want to publish a course? Click here

On the Mass-Period Distributions and Correlations of Extrasolar Planets

104   0   0.0 ( 0 )
 Added by Ing-Guey Jiang
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

In addition to fitting the data of 233 extra-solar planets with power laws, we construct a correlated mass-period distribution function of extrasolar planets, as the first time in this field. The algorithm to generate a pair of positively correlated beta-distributed random variables is introduced and used for the construction of correlated distribution functions. We investigate the mass-period correlations of extrasolar planets both in the linear and logarithm spaces, determine the confidence intervals of the correlation coefficients, and confirm that there is a positive mass-period correlation for the extrasolar planets. In addition to the paucity of massive close-in planets, which makes the main contribution on this correlation, there are other fine structures for the data in the mass-period plane.



rate research

Read More

277 - Li-Chin Yeh 2009
Using the period and mass data of two hundred and seventy-nine extrasolar planets, we have constructed a coupled period-mass function through the non-parametric approach. This analytic expression of the coupled period-mass function has been obtained for the first time in this field. Moreover, due to a moderate period-mass correlation, the shapes of mass/period functions vary as a function of period/mass. These results of mass and period functions give way to two important implications: (1) the deficit of massive close-in planets is confirmed, and (2) the more massive planets have larger ranges of possible semi-major axes. These interesting statistical results will provide important clues into the theories of planetary formation.
118 - Ing-Guey Jiang 2009
Employing a catalog of 175 extrasolar planets (exoplanets) detected by the Doppler-shift method, we constructed the independent and coupled mass-period functions. It is the first time in this field that the selection effect is considered in the coupled mass-period functions. Our results are consistent with those in Tabachnik and Tremaine (2002) with the major differences that we obtain a flatter mass function but a steeper period function. Moreover, our coupled mass-period functions show that about 2.5 percent of stars would have a planet with mass between Earth Mass and Neptune Mass, and about 3 percent of stars would have a planet with mass between Neptune Mass and Jupiter Mass.
442 - Ing-Guey Jiang 2009
Using the period and mass data of two hundred and seventy-nine extrasolar planets, we have constructed a coupled period-mass function through the non-parametric approach. This analytic expression of the coupled period-mass function has been obtained for the first time in this field. Moreover, due to a moderate period-mass correlation, the shapes of mass/period functions vary as a function of period/mass. These results of mass and period functions give way to two important implications: (1) the deficit of massive close-in planets is confirmed, and (2) the more massive planets have larger ranges of possible semi-major axes. These interesting statistical results will provide important clues into the theories of planetary formation.
Since 1998, a planet-search program around main sequence stars within 50 pc in the southern hemisphere, is carried out with the CORALIE echelle spectrograph at La Silla Observatory. With an observing time span of more than 14 years, the CORALIE survey is now able to unveil Jovian planets on Jupiters period domain. This growing period-interval coverage is important regarding to formation and migration models since observational constraints are still weak for periods beyond the ice line. Long-term precise Doppler measurements with the CORALIE echelle spectrograph, together with a few additional observations made with the HARPS spectrograph on the ESO 3.6m telescope, reveal radial velocity signatures of massive planetary companions in long period orbits. In this paper we present seven new planets orbiting HD27631, HD98649, HD106515A, HD166724, HD196067, HD219077, and HD220689 together with the CORALIE orbital parameters for three already known planets around HD10647, HD30562, and HD86226. The period range of the new planetary companions goes from 2200 to 5500 days and covers a mass domain between 1 and 10.5 MJup. Surprisingly, five of them present quite high eccentricities above e>0.57. A pumping scenario by Kozai mechanism may be invoked for HD106515Ab and HD196067b which are both orbiting stars in multiple systems. As the presence of a third massive body cant be inferred from the data of HD98649b, HD166724b, and HD219077b, the origin of the eccentricity of these systems remains unknown. Except for HD10647b, no constraint on the upper mass of the planets is provided by Hipparcos astrometric data. Finally it is interesting to note that the hosts of these long period planets show no metallicity excess.
The search for extrasolar rocky planets has already found the first transiting rocky super-Earth, Corot 7b, with a surface temperature that allows for magma oceans. Here we ask if we could distinguish rocky planets with recent major volcanism by remote observation. We develop a model for volcanic eruptions on an Earth-like exoplanet based on the present day Earth, derive the observable features in emergent and transmission spectra for multiple scenarios of gas distribution and cloudcover. We calculate the observation time needed to detect explosive volcanism on exoplanets in primary as well as secondary eclipse and discuss the likelihood of observing volcanism on transiting Earth to super-Earth sized exoplanets. We find that sulfur dioxide from large explosive eruptions does present a spectral signal that is remotely detectable especially for secondary eclipse measurements around the closest stars using ground based telescopes, and report the frequency and magnitude of the expected signatures. Transit probability of planet in the habitable zone decreases with distance to the host star, making small, close by host stars the best targets
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا