This paper approaches the definition and properties of dynamic convex risk measures through the notion of a family of concave valuation operators satisfying certain simple and credible axioms. Exploring these in the simplest context of a finite time set and finite sample space, we find natural risk-transfer and time-consistency properties for a firm seeking to spread its risk across a group of subsidiaries.
This paper gives an overview of the theory of dynamic convex risk measures for random variables in discrete time setting. We summarize robust representation results of conditional convex risk measures, and we characterize various time consistency properties of dynamic risk measures in terms of acceptance sets, penalty functions, and by supermartingale properties of risk processes and penalty functions.
Expanding on techniques of concentration of measure, we develop a quantitative framework for modeling liquidity risk using convex risk measures. The fundamental objects of study are curves of the form $(rho(lambda X))_{lambda ge 0}$, where $rho$ is a convex risk measure and $X$ a random variable, and we call such a curve a emph{liquidity risk profile}. The shape of a liquidity risk profile is intimately linked with the tail behavior of the underlying $X$ for some notable classes of risk measures, namely shortfall risk measures. We exploit this link to systematically bound liquidity risk profiles from above by other real functions $gamma$, deriving tractable necessary and sufficient conditions for emph{concentration inequalities} of the form $rho(lambda X) le gamma(lambda)$, for all $lambda ge 0$. These concentration inequalities admit useful dual representations related to transport inequalities, and this leads to efficient uniform bounds for liquidity risk profiles for large classes of $X$. On the other hand, some modest new mathematical results emerge from this analysis, including a new characterization of some classical transport-entropy inequalities. Lastly, the analysis is deepened by means of a surprising connection between time consistency properties of law invariant risk measures and the tensorization of concentration inequalities.
In the conditional setting we provide a complete duality between quasiconvex risk measures defined on $L^{0}$ modules of the $L^{p}$ type and the appropriate class of dual functions. This is based on a general result which extends the usual Penot-Volle representation for quasiconvex real valued maps.
We propose a generalization of the classical notion of the $V@R_{lambda}$ that takes into account not only the probability of the losses, but the balance between such probability and the amount of the loss. This is obtained by defining a new class of law invariant risk measures based on an appropriate family of acceptance sets. The $V@R_{lambda}$ and other known law invariant risk measures turn out to be special cases of our proposal. We further prove the dual representation of Risk Measures on $mathcal{P}(% mathbb{R}).$
Risk assessment under different possible scenarios is a source of uncertainty that may lead to concerning financial losses. We address this issue, first, by adapting a robust framework to the class of spectral risk measures. Second, we propose a Deviation-based approach to quantify uncertainty. Furthermore, the theory is illustrated with a practical case study from NASDAQ index.