Do you want to publish a course? Click here

Resolving the complex structure of the dust torus in the active nucleus of the Circinus galaxy

177   0   0.0 ( 0 )
 Added by Konrad Tristram
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

To test the dust torus model for active galactic nuclei directly, we study the extent and morphology of the nuclear dust distribution in the Circinus galaxy using high resolution interferometric observations in the mid-infrared with the MIDI instrument at the Very Large Telescope Interferometer. We find that the dust distribution in the nucleus of Circinus can be explained by two components, a dense and warm disk-like component of 0.4 pc size and a slightly cooler, geometrically thick torus component with a size of 2.0 pc. The disk component is oriented perpendicular to the ionisation cone and outflow and seems to show the silicate feature at 10 micron in emission. It coincides with a nuclear maser disk in orientation and size. From the energy needed to heat the dust, we infer a luminosity of the accretion disk corresponding to 20% of the Eddington luminosity of the nuclear black hole. We find that the interferometric data are inconsistent with a simple, smooth and axisymmetric dust emission. The irregular behaviour of the visibilities and the shallow decrease of the dust temperature with radius provide strong evidence for a clumpy or filamentary dust structure. We see no evidence for dust reprocessing, as the silicate absorption profile is consistent with that of standard galactic dust. We argue that the collimation of the ionising radiation must originate in the geometrically thick torus component. Our findings confirm the presence of a geometrically thick, torus-like dust distribution in the nucleus of Circinus, as required in unified schemes of Seyfert galaxies. Several aspects of our data require that this torus is irregular, or clumpy.



rate research

Read More

In some AGN, nuclear dust lanes connected to kpc-scale dust structures provide all the extinction required to obscure the nucleus, challenging the role of the dusty torus proposed by the Unified Model. In this letter we show the pc-scale dust and ionized gas maps of Circinus constructed using sub-arcsec-accuracy registration of infrared VLT AO images with optical textit{Hubble Space Telescope} images. We find that the collimation of the ionized gas does not require a torus but is caused by the distribution of dust lanes of the host galaxy on $sim$10 pc scales. This finding questions the presumed torus morphology and its role at parsec scales, as one of its main attributes is to collimate the nuclear radiation, and is in line with interferometric observations which show that most of the pc-scale dust is in the polar direction. We estimate that the nuclear dust lane in Circinus provides $1/3$ of the extinction required to obscure the nucleus. This constitutes a conservative lower limit to the obscuration at the central parsecs, where the dust filaments might get optically thicker if they are the channels that transport material from $sim$100 pc scales to the centre.
271 - K. R. W. Tristram 2013
(Abridged) With infrared interferometry it is possible to resolve the nuclear dust distributions that are commonly associated with the dusty torus in active galactic nuclei (AGN). The Circinus galaxy hosts the closest Seyfert 2 nucleus and previous interferometric observations have shown that its nuclear dust emission is well resolved. To better constrain the dust morphology in this active nucleus, extensive new observations were carried out with MIDI at the Very Large Telescope Interferometer. The emission is distributed in two distinct components: a disk-like emission component with a size of ~ 0.2 $times$ 1.1 pc and an extended component with a size of ~ 0.8 $times$ 1.9 pc. The disk-like component is elongated along PA ~ 46{deg} and oriented perpendicular to the ionisation cone and outflow. The extended component is elongated along PA ~ 107{deg}, roughly perpendicular to the disk component and thus in polar direction. It is interpreted as emission from the inner funnel of an extended dust distribution and shows a strong increase in the extinction towards the south-east. We find no evidence of an increase in the temperature of the dust towards the centre. From this we infer that most of the near-infrared emission probably comes from parsec scales as well. We further argue that the disk component alone is not sufficient to provide the necessary obscuration and collimation of the ionising radiation and outflow. The material responsible for this must instead be located on scales of ~ 1 pc, surrounding the disk. The clear separation of the dust emission into a disk-like emitter and a polar elongated source will require an adaptation of our current understanding of the dust emission in AGN. The lack of any evidence of an increase in the dust temperature towards the centre poses a challenge for the picture of a centrally heated dust distribution.
We report the discovery of gas inflow motions towards the active nucleus of the Circinus galaxy caused by the non-axisymmetric potential of a nuclear gas bar. Evidence for dust associated with the bar comes from the HST/NICMOS H-K color map, whereas the streaming motions along the gas bar are seen in the velocity field of the H2 S(1)(1-0) emission line. The gas bar is about 100 pc long with a visual extinction in excess of 10 mag. Indication for the gaseous nature of this bar comes from the lack of a stellar counterpart even in the K band where the extinction is greatly reduced. We also use the NICMOS emission line images (Pa-alpha, [SiVI], and [FeII]) to study the innermost region of the ionization cones and the nuclear star forming activity. We discuss the possible relationship of these components with the gaseous bar.
Simultaneous modeling of the line and continuum emission from the nuclear region of the Circinus galaxy is presented. Composite models which include the combined effect of shocks and photoionization from the active center and from the circumnuclear star forming region are considered. The effects of dust reradiation, bremsstrahlung from the gas and synchrotron radiation are treated consistently. The proposed model accounts for two important observational features. First, the high obscuration of Circinus central source is produced by high velocity and dense clouds with characteristic high dust-to-gas ratios. Their large velocities, up to 1500 kms, place them very close to the active center. Second, the derived size of the line emitting region is well in agreement with the observed limits for the coronal and narrow line region of Circinus.
We present new interferometric data obtained with MIDI (MID infrared Interferometric instrument) for the Seyfert II galaxy NGC 1068, with an extensive coverage of sixteen uv points. These observations resolve the nuclear mid-infrared emission from NGC 1068 in unprecedented detail with a maximum resolution of 7 mas. For the first time, sufficient uv points have been obtained, allowing us to generate an image of the source using maximum entropy image reconstruction. The features of the image are similar to those obtained by modelling. We find that the mid-infrared emission can be represented by two components, each with a Gaussian brightness distribution. The first, identified as the inner funnel of the obscuring torus, is hot (800K), 1.35 parsec long, and 0.45 parsec thick in FWHM at a PA=-42 degrees (from north to east). It has an absorption profile different than standard interstellar dust and with evidence for clumpiness. The second component is 3 by 4 pc in FWHM with T=300K, and we identify it with the cooler body of the torus. The compact component is tilted by 45 degrees with respect to the radio jet and has similar size and orientation to the observed water maser distribution. We show how the dust distribution relates to other observables within a few parsecs of the core of the galaxy such as the nuclear masers, the radio jet, and the ionization cone. We compare our findings to a similar study of the Circinus galaxy and other relevant studies. Our findings shed new light on the relation between the different parsec-scale components in NGC 1068 and the obscuring torus.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا