Do you want to publish a course? Click here

Pointed and copointed Hopf algebras as cocycle deformations

147   0   0.0 ( 0 )
 Added by Mitja Mastnak
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

We show that all finite dimensional pointed Hopf algebras with the same diagram in the classification scheme of Andruskiewitsch and Schneider are cocycle deformations of each other. This is done by giving first a suitable characterization of such Hopf algebras, which allows for the application of a result of Masuoka about Morita-Takeuchi equivalence and of Schauenburg about Hopf Galois extensions. The infinitesimal part of the deforming cocycle and of the deformation determine the deformed multiplication and can be described explicitly in terms of Hochschild cohomology. Applications to, and results for copointed Hopf algebras are also considered.



rate research

Read More

305 - Pavel Etingof , Cris Negron 2019
We examine actions of finite-dimensional pointed Hopf algebras on central simple division algebras in characteristic 0. (By a Hopf action we mean a Hopf module algebra structure.) In all examples considered, we show that the given Hopf algebra does admit a faithful action on a central simple division algebra, and we construct such a division algebra. This is in contrast to earlier work of Etingof and Walton, in which it was shown that most pointed Hopf algebras do not admit faithful actions on fields. We consider all bosonizations of Nichols algebras of finite Cartan type, small quantum groups, generalized Taft algebras with non-nilpotent skew primitive generators, and an example of non-Cartan type.
115 - Jason Gaddis , Robert Won 2021
We study actions of pointed Hopf algebras in the $ZZ$-graded setting. Our main result classifies inner-faithful actions of generalized Taft algebras on quantum generalized Weyl algebras which respect the $ZZ$-grading. We also show that generically the invariant rings of Taft actions on quantum generalized Weyl algebras are commutative Kleinian singularities.
The Calabi-Yau property of cocommutative Hopf algebras is discussed by using the homological integral, a recently introduced tool for studying infinite dimensional AS-Gorenstein Hopf algebras. It is shown that the skew-group algebra of a universal enveloping algebra of a finite dimensional Lie algebra $g$ with a finite subgroup $G$ of automorphisms of $g$ is Calabi-Yau if and only if the universal enveloping algebra itself is Calabi-Yau and $G$ is a subgroup of the special linear group $SL(g)$. The Noetherian cocommutative Calabi-Yau Hopf algebras of dimension not larger than 3 are described. The Calabi-Yau property of Sridharan enveloping algebras of finite dimensional Lie algebras is also discussed. We obtain some equivalent conditions for a Sridharan enveloping algebra to be Calabi-Yau, and then partly answer a question proposed by Berger. We list all the nonisomorphic 3-dimensional Calabi-Yau Sridharan enveloping algebras.
In this work we study the deformations of a Hopf algebra $H$ by partial actions of $H$ on its base field $Bbbk$, via partial smash product algebras. We introduce the concept of a $lambda$-Hopf algebra as a Hopf algebra obtained as a partial smash product algebra, and show that every Hopf algebra is a $lambda$-Hopf algebra. Moreover, a method to compute partial actions of a given Hopf algebra on its base field is developed and, as an application, we exhibit all partial actions of such type for some families of Hopf algebras.
We investigate a method of construction of central deformations of associative algebras, which we call centrification. We prove some general results in the case of Hopf algebras and provide several examples.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا