Do you want to publish a course? Click here

Unveiling the core of the Globular Cluster M15 in the Ultraviolet

212   0   0.0 ( 0 )
 Added by Andrea Dieball
 Publication date 2007
  fields Physics
and research's language is English
 Authors A. Dieball




Ask ChatGPT about the research

We have obtained deep far- (FUV) and near-ultraviolet (NUV) images of the inner region of the dense globular cluster M15 with the Advanced Camera for Surveys on board the Hubble Space Telescope. The FUV-NUV colour-magnitude diagram shows a well defined track of horizontal branch stars, as well as a trail of blue stragglers and white dwarfs. The main sequence turn-off is clearly visible at FUV~23.5 mag and FUV-NUV~3 mag, and the main sequence stars form a prominent track that extends at least two magnitudes below the main sequence turn-off. As such, this is the deepest FUV-NUV colour-magnitude diagram of a globular cluster presented so far. Cataclysmic variable and blue straggler candidates are the most centrally concentrated stellar populations, which might either be an effect of mass segregation or reflect the preferred birthplace in the dense cluster core of such dynamically-formed objects. We find 41 FUV sources that exhibit significant variability. We classify the variables based on an analysis of their UV colours and variability properties. We find four previously known RR Lyrae and 13 further RR Lyrae candidates, one known Cepheid and six further candidates, six cataclysmic variables, one known and one probable SX Phoenicis star, and the well known low-mass X-ray binary AC211. Our analysis represents the first detection of SX Phoenicis pulsations in the FUV. We find that Cepheids, RR Lyraes and SX Phoenicis exhibit massive variability amplitudes in this waveband (several mags).



rate research

Read More

A population of globular clusters (GCs) has been recently established by the Fermi-LAT telescope as a new class of GeV $gamma$-ray sources. Leptons accelerated to TeV energies, in the inner magnetospheres of MSPs or in their wind regions, should produce $gamma$-rays through the inverse Compton scattering in the dense radiation field from the huge population of stars. We have conducted deep observations of the globular cluster M15 with the MAGIC telescopes and used 165 hrs in order to search for $gamma$-ray emission. A strong upper limit on the TeV $gamma$-ray flux $<3.2times 10^{-13}mathrm{cm^{-2}s^{-1}}$ above 300 GeV ($<0.26%$ of the Crab nebula flux) has been obtained. We interpret this limit as a constraint on the efficiency of the acceleration of leptons in the magnetospheres of the MSPs. We constrain the injection rate of relativistic leptons, $eta_{rm e}$, from the MSPs magnetospheres and their surrounding. We conclude that $eta_{rm e}$ must be lower than expected from the modelling of high energy processes in MSP inner magnetospheres. For leptons accelerated with the power law spectrum in the MSP wind regions, $eta_{rm e}$ is constrained to be much lower than derived for the wind regions around classical pulsars. These constraints are valid for the expected range of magnetic field strengths within the GC and for the range of likely energies of leptons injected from the inner magnetospheres, provided that the leptons are not removed from the globular cluster very efficiently due to advection process. We discuss consequences of these constraints for the models of radiation processes around millisecond pulsars.
90 - A. Dieball 2005
We have used the Advanced Camera for Surveys on board the Hubble Space Telescope to image the core of the globular cluster M15 in the far-ultraviolet (FUV) waveband. Based on these observations, we identify the FUV counterpart of the recently discovered low-mass X-ray binary M15 X-2. Our time-resolved FUV photometry shows a modulation with 0.062+/-0.004 mag semi-amplitude and we clearly detect a period of 22.5806+/-0.0002 min. We have carried out extensive Monte Carlo simulations which show that the signal is consistent with being coherent over the entire observational time range of more than 3000 cycles. This strongly suggests that it represents the orbital period of the binary system. M15 X-2 is FUV bright (approx. 17 mag) and is characterized by an extremely blue spectral energy distribution (F_lambda ~ lambda^{-2.0}). We also find evidence for an excess of flux between 1500 and 1600 AA and probably between 1600 and 2000 AA, which might be due to CIV 1550 and HeII 1640 emission lines. We also show that M15 X-2s X-ray luminosity can be powered by accretion at the rate expected for gravitational-wave-driven mass transfer at this binary period. The observed FUV emission appears to be dominated by an irradiated accretion disk around the neutron star primary, and the variability can be explained by irradiation of the low-mass white dwarf donor if the inclination of the system is approx. 34 degree. We conclude that all observational characteristics of M15 X-2 are consistent with it being an ultracompact X-ray binary, only the third confirmed such object in a globular cluster.
We present measurements of the periods, amplitudes, and types of 74 RR Lyrae stars in the globular cluster M15 derived from Nickel 1 m telescope observations conducted at LickObservatory in 2019 and 2020. Of these RR Lyrae stars, two were previously reported but without a determination of the period. In addition, we identify five Type II Cepheid variable stars for which we report three novel period determinations, and a further 34 stars with uncertain classifications and periods. We discuss the development and subsequent application to our data of a new Python package, Period-determination and Identification Pipeline Suite(PIPS), based on a new adaptive free-form fitting technique to detect the periods of variable stars with a clear treatment of uncertainties.
We have used the Ultraviolet Imaging Telescope to obtain deep far-UV (1620 Angstrom), 40 diameter images of the prototypical metal-rich globular cluster 47 Tucanae. We find a population of about 20 hot (Teff > 9000 K) objects near or above the predicted UV luminosity of the hot horizontal branch (HB) and lying within two half-light radii of the cluster center. We believe these are normal hot HB or post-HB objects rather than interacting binaries or blue stragglers. IUE spectra of two are consistent with post-HB phases. These observations, and recent HST photometry of two other metal-rich clusters, demonstrate that populations with rich, cool HBs can nonetheless produce hot HB and post-HB stars. The cluster center also contains an unusual diffuse far-UV source which is more extended than its V-band light. It is possible that this is associated with an intracluster medium, for which there was earlier infrared and X-ray evidence, and is produced by C IV emission or scattered light from grains.
We present the results of a survey for variable stars in the core of the globular cluster M3. Our findings include the discovery of eleven new or suspected variables, including a possible W Vir, and the first period determinations for thirteen previously known variables.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا