Moments and distribution of the local times of a transient random walk on $Z^d$


Abstract in English

Consider an arbitrary transient random walk on $Z^d$ with $dinN$. Pick $alphain[0,infty)$ and let $L_n(alpha)$ be the spatial sum of the $alpha$-th power of the $n$-step local times of the walk. Hence, $L_n(0)$ is the range, $L_n(1)=n+1$, and for integers $alpha$, $L_n(alpha)$ is the number of the $alpha$-fold self-intersections of the walk. We prove a strong law of large numbers for $L_n(alpha)$ as $ntoinfty$. Furthermore, we identify the asymptotic law of the local time in a random site uniformly distributed over the range. These results complement and contrast analogous results for recurrent walks in two dimensions recently derived by v{C}erny cite{Ce07}. Although these assertions are certainly known to experts, we could find no proof in the literature in this generality.

Download