Do you want to publish a course? Click here

Studies of Spin Effects in Charged Higgs Boson Production with an Iterative Discriminant Analysis at the Tevatron and LHC

91   0   0.0 ( 0 )
 Added by Andre Sopczak
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We report on detailed Monte Carlo comparisons of selection variables to separate tbH+ signal events from the Standard Model ttbar background using an Iterative Discriminant Analysis (IDA) method. While kinematic differences exist between the two processes whenever m(H+).ne.m(W+), the exploration of the spin difference between the charged Higgs and the W+ gauge boson becomes crucial in the particularly challenging case of near degeneracy of the charged Higgs boson mass with the W+ mass. The TAUOLA package is used to decay the tau leptons emerging from the charged Higgs and W+ boson decays taking the spin difference properly into account. We demonstrate that, even if the individual selection variables have limited discriminant power, the IDA method achieves a significant separation between the expected signal and background. For both Tevatron and LHC energies, the impact of the spin effects and H+ mass on the separation of signal and background has been studied quantitatively. The effect of a hard transverse momentum cut to remove QCD background has been studied and it is found that the spin effects remain important. The separation is expressed in purity versus efficiency curves. The study is performed for charged Higgs boson masses between the W+ mass and near the top mass.



rate research

Read More

We consider the transverse-momentum (q_T) distribution of Standard Model Higgs bosons produced by gluon fusion in hadron collisions. At small q_T (q_T<<m_H, m_H being the mass of the Higgs boson), we resum the logarithmically-enhanced contributions due to multiple soft-gluon emission to all order in QCD perturbation theory. At intermediate and large values of q_T (q_T <~m_H), we consistently combine resummation with the known fixed-order results. We use the most advanced perturbative information that is available at present: next-to-next-to-leading logarithmic resummation combined with the next-to-leading fixed-order calculation. We extend previous results including exactly all the perturbative terms up to order alphas^4 in our computation and, after integration over q_T, we recover the known next-to-next-to-leading order result for the total cross section. We present numerical results at the Tevatron and the LHC, together with an estimate of the corresponding uncertainties. Our calculation is implemented in an updated version of the numerical code HqT.
We present results for the SM and MSSM Higgs-boson production cross sections at the Tevatron and the LHC. The SM cross sections are a compilation of the state-of-the-art theoretical predictions. The MSSM cross sections are obtained from the SM ones by means of an effective coupling approximation, as implemented in FeynHiggs. Numerical results have been obtained in four benchmark scenarios for two values of tan beta, tan beta = 5, 40.
We investigate the associated production of charged Higgs bosons (H^pm) and W bosons at the CERN Large Hadron Collider, using the leptonic decay H^+ -> tau^+ nu_tau and hadronic W decay, within different scenarios of the Minimal Supersymmetric Standard Model (MSSM) with both real and complex parameters. Performing a parton level study we show how the irreducible Standard Model background from W + 2 jets can be controlled by applying appropriate cuts. In the standard m_h^max scenario we find a viable signal for large tan beta and intermediate H^pm masses (~ m_t). In MSSM scenarios with large mass-splittings among the heavy Higgs bosons the cross-section can be resonantly enhanced by factors up to one hundred, with a strong dependence on the CP-violating phases.
We review the status of the QCD corrected cross sections and kinematic distributions for the production of a Higgs boson in association with top quark or bottom quark pairs at the Fermilab Tevatron and at the LHC. Results for b-bbar-H production are presented in the Minimal Supersymmetric Model, where the rates can be greatly enhanced relative to the Standard Model rates. We place particular emphasis on theoretical uncertainties due to renormalization and factorization scale dependence and on the uncertainties coming from the Parton Distribution Functions.
Pair production of Higgs boson at the Large Hadron Collider (LHC) is known to be important for the determination of Higgs boson self-coupling and the probe of new physics beyond the Standard Model (SM), especially the existence of new fundamental scalar boson. In this paper we study in detail the Higgs pair production at the LHC in a well-motivated model, the Gauged Two Higgs Doublet Model (G2HDM) in which the two Higgs doublets are properly embedded into a gauged $SU(2)_H$ and a dark matter candidate emerges naturally due to the gauge symmetry. Besides the deviations of Higgs couplings from the SM predictions, the existence of new scalars could enhance the production cross section of Higgs boson pair at the LHC significantly. However, when we take into account the relic density of dark matter and the null result in its direct search, only moderate enhancement can be maintained. We also comment on the capability of distinguishing the signal of a new generic scalar from the SM at the LHC, assuming the Higgs pair production cross sections are the same.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا