Do you want to publish a course? Click here

Entanglement transformation with no classical communication

495   0   0.0 ( 0 )
 Added by Bing He
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an optimal scheme to realize the transformations between single copies of two bipartite entangled states without classical communication between the sharing parties. The scheme achieves the upper bound for the success probabilities [PRA 63, 022301 (2001), PRL 83, 1455 (1999)] of generating maximally entangled states if applied to entanglement concentration. Such strategy also dispenses with the interaction with an ancilla system in the implementation. We also show that classical communications are indispensable in realizing the deterministic transformations of a single bipartite entangled state. With a finite number of identical pairs of two entangled bosons, on the other hand, we can realize the deterministic transformation to any target entangled state of equal or less Schmidt rank through an extension of the scheme.



rate research

Read More

Given one or more uses of a classical channel, only a certain number of messages can be transmitted with zero probability of error. The study of this number and its asymptotic behaviour constitutes the field of classical zero-error information theory, the quantum generalisation of which has started to develop recently. We show that, given a single use of certain classical channels, entangled states of a system shared by the sender and receiver can be used to increase the number of (classical) messages which can be sent with no chance of error. In particular, we show how to construct such a channel based on any proof of the Bell-Kochen-Specker theorem. This is a new example of the use of quantum effects to improve the performance of a classical task. We investigate the connection between this phenomenon and that of ``pseudo-telepathy games. The use of generalised non-signalling correlations to assist in this task is also considered. In this case, a particularly elegant theory results and, remarkably, it is sometimes possible to transmit information with zero-error using a channel with no unassisted zero-error capacity.
177 - R. Prevedel , Y. Lu , W. Matthews 2010
We present and experimentally demonstrate a communication protocol that employs shared entanglement to reduce errors when sending a bit over a particular noisy classical channel. Specifically, it is shown that, given a single use of this channel, one can transmit a bit with higher success probability when sender and receiver share entanglement compared to the best possible strategy when they do not. The experiment is realized using polarization-entangled photon pairs, whose quantum correlations play a critical role in both the encoding and decoding of the classical message. Experimentally, we find that a bit can be successfully transmitted with probability 0.891 pm 0.002, which is close to the theoretical maximum of (2 + 2^-1/2)/3 simeq 0.902 and is significantly above the optimal classical strategy, which yields 5/6 simeq 0.833.
We consider the problem of transmitting classical and quantum information reliably over an entanglement-assisted quantum channel. Our main result is a capacity theorem that gives a three-dimensional achievable rate region. Points in the region are rate triples, consisting of the classical communication rate, the quantum communication rate, and the entanglement consumption rate of a particular coding scheme. The crucial protocol in achieving the boundary points of the capacity region is a protocol that we name the classically-enhanced father protocol. The classically-enhanced father protocol is more general than other protocols in the family tree of quantum Shannon theoretic protocols, in the sense that several previously known quantum protocols are now child protocols of it. The classically-enhanced father protocol also shows an improvement over a time-sharing strategy for the case of a qubit dephasing channel--this result justifies the need for simultaneous coding of classical and quantum information over an entanglement-assisted quantum channel. Our capacity theorem is of a multi-letter nature (requiring a limit over many uses of the channel), but it reduces to a single-letter characterization for at least three channels: the completely depolarizing channel, the quantum erasure channel, and the qubit dephasing channel.
It is known that the number of different classical messages which can be communicated with a single use of a classical channel with zero probability of decoding error can sometimes be increased by using entanglement shared between sender and receiver. It has been an open question to determine whether entanglement can ever increase the zero-error communication rates achievable in the limit of many channel uses. In this paper we show, by explicit examples, that entanglement can indeed increase asymptotic zero-error capacity, even to the extent that it is equal to the normal capacity of the channel. Interestingly, our examples are based on the exceptional simple root systems E7 and E8.
We study the task of entanglement distillation in the one-shot setting under different classes of quantum operations which extend the set of local operations and classical communication (LOCC). Establishing a general formalism which allows for a straightforward comparison of their exact achievable performance, we relate the fidelity of distillation under these classes of operations with a family of entanglement monotones and the rates of distillation with a class of smoothed entropic quantities based on the hypothesis testing relative entropy. We then characterise exactly the one-shot distillable entanglement of several classes of quantum states and reveal many simplifications in their manipulation. We show in particular that the $varepsilon$-error one-shot distillable entanglement of any pure state is the same under all sets of operations ranging from one-way LOCC to separability-preserving operations or operations preserving the set of states with positive partial transpose, and can be computed exactly as a quadratically constrained linear program. We establish similar operational equivalences in the distillation of isotropic and maximally correlated states, reducing the computation of the relevant quantities to linear or semidefinite programs. We also show that all considered sets of operations achieve the same performance in environment-assisted entanglement distillation from any state.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا