Do you want to publish a course? Click here

Black Holes and Quantum Gravity at the LHC

159   0   0.0 ( 0 )
 Added by Patrick Meade
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

We argue that the highly studied black hole signatures based on thermal multiparticle final states are very unlikely and only occur in a very limited parameter regime if at all. However, we show that if the higher-dimensional quantum gravity scale is low, it should be possible to study quantum gravity in the context of higher dimensions through detailed compositeness-type searches.



rate research

Read More

We examine the LHC phenomenology of quantum black holes in models of TeV gravity. By quantum black holes we mean black holes of the smallest masses and entropies, far from the semiclassical regime. These black holes are formed and decay over short distances, and typically carry SU(3) color charges inherited from their parton progenitors. Based on a few minimal assumptions, such as gauge invariance, we identify interesting signatures for quantum black hole decay such as 2 jets, jet + hard photon, jet + missing energy and jet + charged lepton, which should be readily visible above background. The detailed phenomenology depends heavily on whether one requires a Lorentz invariant, low-energy effective field theory description of black hole processes.
The generalized uncertainty principle, motivated by string theory and non-commutative quantum mechanics, suggests significant modifications to the Hawking temperature and evaporation process of black holes. For extra-dimensional gravity with Planck scale O(TeV), this leads to important changes in the formation and detection of black holes at the the Large Hadron Collider. The number of particles produced in Hawking evaporation decreases substantially. The evaporation ends when the black hole mass is Planck scale, leaving a remnant and a consequent missing energy of order TeV. Furthermore, the minimum energy for black hole formation in collisions is increased, and could even be increased to such an extent that no black holes are formed at LHC energies.
If the fundamental Planck scale is near a TeV, then TeV scale black holes should be produced in proton-proton collisions at the LHC where sqrt{s} = 14 TeV. As the temperature of the black holes can be ~ 1 TeV we also expect production of Higgs bosons from them via Hawking radiation. This is a different production mode for the Higgs boson, which would normally be produced via direct pQCD parton fusion processes. In this paper we compare total cross sections and transverse momentum distributions dsigma/dp_T for Higgs production from black holes at the LHC with those from direct parton fusion processes at next-to-next-to-leading order and next-to-leading order respectively. We find that the Higgs production from black holes can be larger or smaller than the direct pQCD production depending upon the Planck mass and black hole mass. We also find that dsigma/dp_T of Higgs production from black holes increases as a function of p_T which is in sharp contrast with the pQCD predictions where dsigma/dp_T decreases so we suggest that the measurement of an increase in dsigma/dp_T as p_T increases for Higgs (or any other heavy particle) production can be a useful signature for black holes at the LHC.
122 - C Sivaram 2008
The relevant physics for the possible formation of black holes in the LHC is discussed.
154 - Andrew Chamblin 2009
LHC is expected to be a top quark factory. If the fundamental Planck scale is near a TeV, then we also expect the top quarks to be produced from black holes via Hawking radiation. In this paper we calculate the cross sections for top quark production from black holes at the LHC and compare it with the direct top quark cross section via parton fusion processes at next-to-next-to-leading order (NNLO). We find that the top quark production from black holes can be larger or smaller than the pQCD predictions at NNLO depending upon the Planck mass and black hole mass. Hence the observation of very high rates for massive particle production (top quarks, higgs or supersymmetry) at the LHC may be an useful signature for black hole production.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا