No Arabic abstract
We present a rigidity property of holomorphic generators on the open unit ball $mathbb{B}$ of a Hilbert space $H$. Namely, if $finHol (mathbb{B},H)$ is the generator of a one-parameter continuous semigroup ${F_t}_{tgeq 0}$ on $mathbb{B}$ such that for some boundary point $tauin partialmathbb{B}$, the admissible limit $K$-$limlimits_{ztotau}frac{f(x)}{|x-tau|^{3}}=0$, then $f$ vanishes identically on $mathbb{B}$.
Let $D$ be a bounded domain in a complex Banach space. According to the Earle-Hamilton fixed point theorem, if a holomorphic mapping $F : D mapsto D$ maps $D$ strictly into itself, then it has a unique fixed point and its iterates converge to this fixed point locally uniformly. Now let $mathcal{B}$ be the open unit ball in a complex Hilbert space and let $F : mathcal{B} mapsto mathcal{B}$ be holomorphic. We show that a similar conclusion holds even if the image $F(mathcal{B})$ is not strictly inside $mathcal{B}$, but is contained in a horosphere internally tangent to the boundary of $mathcal{B}$. This geometric condition is equivalent to the fact that $F$ is asymptotically strongly nonexpansive with respect to the hyperbolic metric in $mathcal{B}$.
We prove a theorem on separation of boundary null points for generators of continuous semigroups of holomorphic self-mappings of the unit disk in the complex plane. Our construction demonstrates the existence and importance of a particular role of the binary operation $circ$ given by $1 / f circ g = 1/f + 1/g$ on generators.
Let $f$ be the infinitesimal generator of a one-parameter semigroup $left{ F_{t}right} _{tge0}$ of holomorphic self-mappings of the open unit disk $Delta$. In this paper we study properties of the family $R$ of resolvents $(I+rf)^{-1}:DeltatoDelta~ (rge0)$ in the spirit of geometric function theory. We discovered, in particular, that $R$ forms an inverse Lowner chain of hyperbolically convex functions. Moreover, each element of $R$ satisfies the Noshiro-Warschawski condition and is a starlike function of order at least $frac12$,. This, in turn, implies that each element of $R$ is also a holomorphic generator. We mention also quasiconformal extension of an element of $R.$ Finally we study the existence of repelling fixed points of this family.
We prove a Julia-Wolff-Caratheodory type theorem for infinitesimal generators on the unit ball in C^n. Moreover, we study jets expansions at the boundary and give necessary and sufficient conditions on such jets for an infinitesimal generator to generate a group of automorphisms of the ball.
We establish that the Volterra-type integral operator $J_b$ on the Hardy spaces $H^p$ of the unit ball $mathbb{B}_n$ exhibits a rather strong rigid behavior. More precisely, we show that the compactness, strict singularity and $ell^p$-singularity of $J_b$ are equivalent on $H^p$ for any $1 le p < infty$. Moreover, we show that the operator $J_b$ acting on $H^p$ cannot fix an isomorphic copy of $ell^2$ when $p e 2.$