Do you want to publish a course? Click here

The public goods game on homogeneous and heterogeneous networks: investment strategy according to the pool size

297   0   0.0 ( 0 )
 Added by Zigang Huang
 Publication date 2007
  fields Financial Physics
and research's language is English




Ask ChatGPT about the research

We propose an extended public goods interaction model to study the evolution of cooperation in heterogeneous population. The investors are arranged on the well known scale-free type network, the Barab{a}si-Albert model. Each investor is supposed to preferentially distribute capital to pools in its portfolio based on the knowledge of pool sizes. The extent that investors prefer larger pools is determined by investment strategy denoted by a tunable parameter $alpha$, with larger $alpha$ corresponding to more preference to larger pools. As comparison, we also study this interaction model on square lattice, and find that the heterogeneity contacts favors cooperation. Additionally, the influence of local topology to the game dynamics under different $alpha$ strategies are discussed. It is found that the system with smaller $alpha$ strategy can perform comparatively better than the larger $alpha$ ones.



rate research

Read More

Finding ways to overcome the temptation to exploit one another is still a challenge in behavioural sciences. In the framework of evolutionary game theory, punishing strategies are frequently used to promote cooperation in competitive environments. Here, we introduce altruistic punishers in the spatial public goods game. This strategy acts as a cooperator in the absence of defectors, otherwise it will punish all defectors in their vicinity while bearing a cost to do so. We observe three distinct behaviours in our model: i) in the absence of punishers, cooperators (who dont punish defectors) are driven to extinction by defectors for most parameter values; ii) clusters of punishers thrive by sharing the punishment costs when these are low iii) for higher punishment costs, punishers, when alone, are subject to exploitation but in the presence of cooperators can form a symbiotic spatial structure that benefits both. This last observation is our main finding since neither cooperation nor punishment alone can survive the defector strategy in this parameter region and the specificity of the symbiotic spatial configuration shows that lattice topology plays a central role in sustaining cooperation. Results were obtained by means of Monte Carlo simulations on a square lattice and subsequently confirmed by a pairwise comparison of different strategies payoffs in diverse group compositions, leading to a phase diagram of the possible states.
Recently, Press and Dyson have proposed a new class of probabilistic and conditional strategies for the two-player iterated Prisoners Dilemma, so-called zero-determinant strategies. A player adopting zero-determinant strategies is able to pin the expected payoff of the opponents or to enforce a linear relationship between his own payoff and the opponents payoff, in a unilateral way. This paper considers zero-determinant strategies in the iterated public goods game, a representative multi-player evolutionary game where in each round each player will choose whether or not put his tokens into a public pot, and the tokens in this pot are multiplied by a factor larger than one and then evenly divided among all players. The analytical and numerical results exhibit a similar yet different scenario to the case of two-player games: (i) with small number of players or a small multiplication factor, a player is able to unilaterally pin the expected total payoff of all other players; (ii) a player is able to set the ratio between his payoff and the total payoff of all other players, but this ratio is limited by an upper bound if the multiplication factor exceeds a threshold that depends on the number of players.
158 - Urna Basu , P. K. Mohanty 2009
We introduce an auto-regressive model which captures the growing nature of realistic markets. In our model agents do not trade with other agents, they interact indirectly only through a market. Change of their wealth depends, linearly on how much they invest, and stochastically on how much they gain from the noisy market. The average wealth of the market could be fixed or growing. We show that in a market where investment capacity of agents differ, average wealth of agents generically follow the Pareto-law. In few cases, the individual distribution of wealth of every agent could also be obtained exactly. We also show that the underlying dynamics of other well studied kinetic models of markets can be mapped to the dynamics of our auto-regressive model.
Productive societies feature high levels of cooperation and strong connections between individuals. Public Goods Games (PGGs) are frequently used to study the development of social connections and cooperative behavior in model societies. In such games, contributions to the public good are made only by cooperators, while all players, including defectors, can reap public goods benefits. Classic results of game theory show that mutual defection, as opposed to cooperation, is the Nash Equilibrium of PGGs in well-mixed populations, where each player interacts with all others. In this paper, we explore the coevolutionary dynamics of a low information public goods game on a network without spatial constraints in which players adapt to their environment in order to increase individual payoffs. Players adapt by changing their strategies, either to cooperate or to defect, and by altering their social connections. We find that even if players do not know other players strategies and connectivity, cooperation can arise and persist despite large short-term fluctuations.
In this Letter, we introduce an aspiration-induced reconnection mechanism into the spatial public goods game. A player will reconnect to a randomly chosen player if its payoff acquired from the group centered on the neighbor does not exceed the aspiration level. We find that an intermediate aspiration level can best promote cooperation. This optimal phenomenon can be explained by a negative feedback effect, namely, a moderate level of reconnection induced by the intermediate aspiration level induces can change the downfall of cooperators, and then facilitate the fast spreading of cooperation. While insufficient reconnection and excessive reconnection induced by low and high aspiration levels respectively are not conductive to such an effect. Moreover, we find that the intermediate aspiration level can lead to the heterogeneous distribution of degree, which will be beneficial to the evolution of cooperation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا