Do you want to publish a course? Click here

Spectral models for solar-scaled and alpha-enhanced stellar populations

124   0   0.0 ( 0 )
 Added by Paula Coelho
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first models allowing one to explore in a consistent way the influence of changes in the alpha-element-to-iron abundance ratio on the high-resolution spectral properties of evolving stellar populations. The models cover the wavelength range 300-1340nm at a resolution of FWHM=1AA, for metallicities in the range 0.005<=Z<=0.048 and stellar population ages 3 to 14 Gyr. These models are based on a recent library of synthetic stellar spectra and a new library of stellar evolutionary tracks, both computed for three different [Fe/H] (-0.5,0.0 and 0.2) and two different [alpha/Fe] (0.0 and 0.4). We expect our fully synthetic models to be primarily useful for evaluating the differential effect of changes in the alpha/Fe ratio on spectral properties such as broad-band colours and narrow spectral features. In addition, we assess the accuracy of absolute model predictions in two ways: first, by comparing the predictions of models for scaled-solar metal abundances [alpha/Fe]=0.0) to those of existing models based on libraries of observed stellar spectra; and secondly, by comparing the predictions of models for alpha-enhanced metal abundances ([alpha/Fe]=0.4) to observed spectra of massive early-type galaxies in the SDSS-DR4. We find that our models predict accurate strengths for those spectral indices that are strongly sensitive to the abundances of Fe and alpha elements. The predictions are less reliable for the strengths of other spectral features, such as those dominated by the abundances of C and N, as expected from the fact that the models do not yet allow one to explore the influence of these elements in an independent way. We conclude that our models are a powerful tool for extracting new information about the chemical properties of galaxies for which high-quality spectra have been gathered by modern surveys.



rate research

Read More

This is the first of a series of papers presenting the Modules for Experiments in Stellar Astrophysics (MESA) Isochrones and Stellar Tracks (MIST) project, a new comprehensive set of stellar evolutionary tracks and isochrones computed using MESA, a state-of-the-art open-source 1D stellar evolution package. In this work, we present models with solar-scaled abundance ratios covering a wide range of ages ($5 leq rm log(Age);[yr] leq 10.3$), masses ($0.1 leq M/M_{odot} leq 300$), and metallicities ($-2.0 leq rm [Z/H] leq 0.5$). The models are self-consistently and continuously evolved from the pre-main sequence to the end of hydrogen burning, the white dwarf cooling sequence, or the end of carbon burning, depending on the initial mass. We also provide a grid of models evolved from the pre-main sequence to the end of core helium burning for $-4.0 leq rm [Z/H] < -2.0$. We showcase extensive comparisons with observational constraints as well as with some of the most widely used existing models in the literature. The evolutionary tracks and isochrones can be downloaded from the project website at http://waps.cfa.harvard.edu/MIST/.
120 - S. L. Hidalgo 2018
We present an updated release of the BaSTI (a Bag of Stellar Tracks and Isochrones) stellar model and isochrone library for a solar scaled heavy element distribution. The main input physics changed from the previous BaSTI release include the solar metal mixture, electron conduction opacities, a few nuclear reaction rates, bolometric corrections, and the treatment of the overshooting efficiency for shrinking convective cores. The new model calculations cover a mass range between 0.1 and 15 Msun, 22 initial chemical compositions between [Fe/H]=-3.20 and +0.45, with helium to metal enrichment ratio dY /dZ=1.31. The isochrones cover an age range between 20 Myr and 14.5 Gyr, take consistently into account the pre-main sequence phase, and have been translated to a large number of popular photometric systems. Asteroseismic properties of the theoretical models have also been calculated. We compare our isochrones with results from independent databases and with several sets of observations, to test the accuracy of the calculations. All stellar evolution tracks, asteroseismic properties and isochrones are made available through a dedicated Web site.
94 - A. Pietrinferni 2004
We present a large and updated stellar evolution database for low-, intermediate- and high-mass stars in a wide metallicity range, suitable for studying Galactic and extragalactic simple and composite stellar populations using population synthesis techniques. The stellar mass range is between sim0.5Mo and 10Mo with a fine mass spacing. The metallicity [Fe/H] comprises 10 values ranging from -2.27 to 0.40, with a scaled solar metal distribution. The initial He mass fraction ranges from Y=0.245, for the more metal-poor composition, up to 0.303 for the more metal-rich one, with Delta Y/Delta Zsim 1.4. For each adopted chemical composition, the evolutionary models have been computed without and with overshooting from the Schwarzschild boundary of the convective cores during the central H-burning phase. The whole set of evolutionary models can be used to compute isochrones in a wide age range, from sim30 Myr to sim15Gyr. Both evolutionary tracks and isochrones are available in several observational planes, employing updated set of bolometric corrections and color-Te relations computed for this project. The number of points along the models and the resulting isochrones is selected in such a way that interpolation for intermediate metallicities not contained in the grid is straightforward. We compare our isochrones with results from different stellar evolution databases and perform some empirical tests for the reliability of our models. Since this work is devoted to scaled solar compositions, we focus our attention on the Galactic disk populations, employing multicolor photometry of unevolved field MS stars with precise Hipparcos parallaxes, well-studied open clusters and one eclipsing binary system with precise measurements of masses, radii and [Fe/H] of both components.
High resolution spectral models for simple stellar populations (SSP) developed in the past few years have become a standard ingredient in studies of stellar population of galaxies. As more such models become available, it becomes increasingly important to test them. In this and a companion paper, we test a suite of publicly available evolutionary synthesis models using integrated optical spectra in the blue-near-UV range of 27 well studied star clusters from the work of Leonardi & Rose (2003) spanning a wide range of ages and metallicities. Most (23) of the clusters are from the Magellanic clouds. This paper concentrates on methodological aspects of spectral fitting. The data are fitted with SSP spectral models from Vazdekis and collaborators, based on the MILES library. Best-fit and Bayesian estimates of age, metallicity and extinction are presented, and degeneracies between these parameters are mapped. We find that these models can match the observed spectra very well in most cases, with small formal uncertainties in t, Z and A_V. In some cases, the spectral fits indicate that the models lack a blue old population, probably associated with the horizontal branch. This methodology, which is mostly based on the publicly available code STARLIGHT, is extended to other sets of models in Paper II, where a comparison with properties derived from spatially resolved data (color-magnitude diagrams) is presented. The global aim of these two papers is to provide guidance to users of evolutionary synthesis models and empirical feedback to model makers.
High spectral resolution evolutionary synthesis models have become a routinely used ingredient in extragalactic work, and as such deserve thorough testing. Star clusters are ideal laboratories for such tests. This paper applies the spectral fitting methodology outlined in Paper I to a sample of clusters, mainly from the Magellanic Clouds and spanning a wide range in age and metallicity, fitting their integrated light spectra with a suite of modern evolutionary synthesis models for single stellar population. The combinations of model plus spectral library employed in this investigation are Galaxev/STELIB, Vazdekis/MILES, SED@/GRANADA, and Galaxev/MILES+GRANADA, which provide a representative sample of models currently available for spectral fitting work. A series of empirical tests are performed with these models, comparing the quality of the spectral fits and the values of age, metallicity and extinction obtained with each of them. A comparison is also made between the properties derived from these spectral fits and literature data on these nearby, well studied clusters. These comparisons are done with the general goal of providing useful feedback for model makers, as well as guidance to the users of such models. We find that new generation of models using the GRANADA and MILES libraries are superior to STELIB-based models both in terms of spectral fit quality and regarding the accuracy with which age and metallicity are retrieved. Accuracies of about 0.1 dex in age and 0.3 dex in metallicity can be achieved as long as the models are not extrapolated beyond their expected range of validity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا