Analytical Analysis of Single-Photon Correlations Emitted by Disordered Semiconductor Heterostructures


Abstract in English

In a recent publication [Phys. Rev. Lett. 97, 227402 (2006), cond-mat/0611411], it has been demonstrated numerically that a long-range disorder potential in semiconductor quantum wells can be reconstructed reliably via single-photon interferometry of spontaneously emitted light. In the present paper, a simplified analytical model of independent two-level systems is presented in order to study the reconstruction procedure in more detail. With the help of this model, the measured photon correlations can be calculated analytically and the influence of parameters such as the disorder length scale, the wavelength of the used light, or the spotsize can be investigated systematically. Furthermore, the relation between the proposed angle-resolved single-photon correlations and the disorder potential can be understood and the measured signal is expected to be closely related to the characteristic strength and length scale of the disorder.

Download