Do you want to publish a course? Click here

Fluctuation relations and coarse-graining

165   0   0.0 ( 0 )
 Added by Saar Rahav
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the application of fluctuation relations to the dynamics of coarse-grained systems, as might arise in a hypothetical experiment in which a system is monitored with a low-resolution measuring apparatus. We analyze a stochastic, Markovian jump process with a specific structure that lends itself naturally to coarse-graining. A perturbative analysis yields a reduced stochastic jump process that approximates the coarse-grained dynamics of the original system. This leads to a non-trivial fluctuation relation that is approximately satisfied by the coarse-grained dynamics. We illustrate our results by computing the large deviations of a particular stochastic jump process. Our results highlight the possibility that observed deviations from fluctuation relations might be due to the presence of unobserved degrees of freedom.



rate research

Read More

The fluctuation-dissipation theorem is a central result in statistical mechanics and is usually formulated for systems described by diffusion processes. In this paper, we propose a generalization for a wider class of stochastic processes, namely the class of Markov processes that satisfy detailed balance and a large-deviation principle. The generalized fluctuation-dissipation theorem characterizes the deterministic limit of such a Markov process as a generalized gradient flow, a mathematical tool to model a purely irreversible dynamics via a dissipation potential and an entropy function: these are expressed in terms of the large-deviation dynamic rate function of the Markov process and its stationary distribution. We exploit the generalized fluctuation-dissipation theorem to develop a new method of coarse-graining and test it in the context of the passage from the diffusion in a double-well potential to the jump process that describes the simple reaction $A rightleftarrows B$ (Kramers escape problem).
We study the coarse-graining approach to derive a generator for the evolution of an open quantum system over a finite time interval. The approach does not require a secular approximation but nevertheless generally leads to a Lindblad-Gorini-Kossakowski-Sudarshan generator. By combining the formalism with Full Counting Statistics, we can demonstrate a consistent thermodynamic framework, once the switching work required for the coupling and decoupling with the reservoir is included. Particularly, we can write the second law in standard form, with the only difference that heat currents must be defined with respect to the reservoir. We exemplify our findings with simple but pedagogical examples.
We study Fluctuation Relations (FRs) for dynamics that are anomalous, in the sense that the diffusive properties strongly deviate from the ones of standard Brownian motion. We first briefly review the concept of transient work FRs for stochastic dynamics modeled by the ordinary Langevin equation. We then introduce three generic types of dynamics generating anomalous diffusion: Levy flights, long-time correlated Gaussian stochastic processes and time-fractional kinetics. By combining Langevin and kinetic approaches we calculate the work probability distributions in the simple nonequilibrium situation of a particle subject to a constant force. This allows us to check the transient FR for anomalous dynamics. We find a new form of FRs, which is intimately related to the validity of fluctuation-dissipation relations. Analogous results are obtained for a particle in a harmonic potential dragged by a constant force. We argue that these findings are important for understanding fluctuations in experimentally accessible systems. As an example, we discuss the anomalous dynamics of biological cell migration both in equilibrium and in nonequilibrium under chemical gradients.
139 - David Andrieux 2011
Lumping a Markov process introduces a coarser level of description that is useful in many contexts and applications. The dynamics on the coarse grained states is often approximated by its Markovian component. In this letter we derive finite-time bounds on the error in this approximation. These results hold for non-reversible dynamics and for probabilistic mappings between microscopic and coarse grained states.
For a given thermodynamic system, and a given choice of coarse-grained state variables, the knowledge of a force-flux constitutive law is the basis for any nonequilibrium modeling. In the first paper of this series we established how, by a generalization of the classical fluctuation-dissipation theorem (FDT), the structure of a constitutive law is directly related to the distribution of the fluctuations of the state variables. When these fluctuations can be expressed in terms of diffusion processes, one may use Green-Kubo-type coarse-graining schemes to find the constitutive laws. In this paper we propose a coarse-graining method that is valid when the fluctuations are described by means of general Markov processes, which include diffusions as a special case. We prove the success of the method by numerically computing the constitutive law for a simple chemical reaction $A rightleftarrows B$. Furthermore, we show that one cannot find a consistent constitutive law by any Green-Kubo-like scheme.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا