No Arabic abstract
We study Schwinger mechanism for gluon pair production in the presence of arbitrary time-dependent chromo-electric background field $E^a(t)$ with arbitrary color index $a$=1,2,...8 in SU(3) by directly evaluating the path integral. We obtain an exact expression for the probability of non-perturbative gluon pair production per unit time per unit volume and per unit transverse momentum $frac{dW}{d^4x d^2p_T}$ from arbitrary $E^a(t)$. We show that the tadpole (or single gluon) effective action does not contribute to the non-perturbative gluon pair production rate $frac{dW}{d^4x d^2p_T}$. We find that the exact result for non-perturbative gluon pair production is independent of all the time derivatives $frac{d^nE^a(t)}{dt^n}$ where $n=1,2,....infty$ and has the same functional dependence on two casimir invariants $[E^a(t)E^a(t)]$ and $[d_{abc}E^a(t)E^b(t)E^c(t)]^2$ as the constant chromo-electric field $E^a$ result with the replacement: $E^a to E^a(t)$. This result may be relevant to study the production of a non-perturbative quark-gluon plasma at RHIC and LHC.
We study the Schwinger mechanism in QCD in the presence of an arbitrary time-dependent chromo-electric background field $E^a(t)$ with arbitrary color index $a$=1,2,...8 in SU(3). We obtain an exact result for the non-perturbative quark (antiquark) production from an arbitrary $E^a(t)$ by directly evaluating the path integral. We find that the exact result is independent of all the time derivatives $frac{d^nE^a(t)}{dt^n}$ where $n=1,2,...infty$. This result has the same functional dependence on two Casimir invariants $[E^a(t)E^a(t)]$ and $[d_{abc}E^a(t)E^b(t)E^c(t)]^2$ as the constant chromo-electric field $E^a$ result with the replacement: $E^a rightarrow E^a(t)$. This result relies crucially on the validity of the shift conjecture, which has not yet been established.
We study the non-perturbative production of gluon pairs from a constant SU(3) chromo-electric background field via the Schwinger mechanism. We fix the covariant background gauge with an arbitrary gauge parameter alpha. We determine the transverse momentum distribution of the gluons, as well as the total probability of creating pairs per unit space time volume. We find that the result is independent of the covariant gauge parameter alpha used to define arbitrary covariant background gauges. We find that our non-perturbative result is both gauge invariant and gauge parameter alpha independent.
We obtain an exact result for the non-perturbative quark (antiquark) production rate and its p_T distribution from a constant SU(3) chromo-electric field E^a with arbitary color index $a$ by directly evaluating the path integral. Unlike the WKB tunneling result, which depends only on one gauge invariant quantity |E|, the strength of the chromo-electric field, we find that the exact result for the p_T distribution for quark (antiquark) production rate depends on two independent Casimir (gauge) invariants, E^aE^a and [d_{abc}E^aE^bE^c]^2.
In this article, we have explored the very important quantity of lepton pair production from a hot and dense QCD medium in presence of an arbitrary magnetic field for simultaneous nonzero values of both the parallel and perpendicular components of momentum. As opposed to the zero magnetic field case (the so-called Born rate) or the lowest Landau level approximated rate, where only the annihilation process contributes, here we observe contributions also arising out of the quark and antiquark decay processes. We found the encouraging result of considerable enhancement of lepton pair production in presence of a magnetic field. We further decompose the total rate into different physical processes and make interesting observations for both zero and nonzero baryon density.
We study the vacuum pair production by a time-dependent strong electric field based on the exact WKB analysis. We identify the generic structure of a Stokes graph for systems with the vacuum pair production and show that the number of produced pairs is given by a product of connection matrices for Stokes segments connecting pairs of turning points. We derive an explicit formula for the number of produced pairs, assuming the semi-classical limit. The obtained formula can be understood as a generalization of the divergent asymptotic series method by Berry, and is consistent with other semi-classical methods such as the worldline instanton method and the steepest descent evaluation of the Bogoliubov coefficients done by Brezin and Izykson. We also use the formula to discuss effects of time-dependence of the applied strong electric field including the interplay between the perturbative multi-photon pair production and non-peturbative Schwinger mechanism, and the dynamically assisted Schwinger mechanism.