We discuss a pulsar acceleration mechanism based on asymmetric neutrino emission from the direct quark Urca process in the interior of proto neutron stars. The anisotropy is caused by a strong magnetic field which polarises the spin of the electrons opposite to the field direction. Due to parity violation the neutrinos and anti-neutrinos leave the star in one direction accelerating the pulsar. We calculate for varying quark chemical potentials the kick velocity in dependence of the quark phase temperature and its radius. Ignoring neutrino quark scattering we find that within a quark phase radius of 10 km and temperatures larger than 5 MeV kick velocities of 1000km s$^{-1}$ can be reached very easily. On the other hand taking into account the small neutrino mean free paths it seems impossible to reach velocities higher than 100km s$^{-1}$ even when including effects from colour superconductivity where the neutrino quark interactions are suppressed.