Do you want to publish a course? Click here

Provenance as Dependency Analysis

147   0   0.0 ( 0 )
 Added by James Cheney
 Publication date 2009
and research's language is English




Ask ChatGPT about the research

Provenance is information recording the source, derivation, or history of some information. Provenance tracking has been studied in a variety of settings; however, although many design points have been explored, the mathematical or semantic foundations of data provenance have received comparatively little attention. In this paper, we argue that dependency analysis techniques familiar from program analysis and program slicing provide a formal foundation for forms of provenance that are intended to show how (part of) the output of a query depends on (parts of) its input. We introduce a semantic characterization of such dependency provenance, show that this form of provenance is not computable, and provide dynamic and static approximation techniques.



rate research

Read More

We outline the approach being developed in the neuGRID project to use provenance management techniques for the purposes of capturing and preserving the provenance data that emerges in the specification and execution of workflows in biomedical analyses. In the neuGRID project a provenance service has been designed and implemented that is intended to capture, store, retrieve and reconstruct the workflow information needed to facilitate users in conducting user analyses. We describe the architecture of the neuGRID provenance service and discuss how the CRISTAL system from CERN is being adapted to address the requirements of the project and then consider how a generalised approach for provenance management could emerge for more generic application to the (Health)Grid community.
We outline the approach being developed in the neuGRID project to use provenance management techniques for the purposes of capturing and preserving the provenance data that emerges in the specification and execution of workflows in biomedical analyses. In the neuGRID project a provenance service has been designed and implemented that is intended to capture, store, retrieve and reconstruct the workflow information needed to facilitate users in conducting user analyses. We describe the architecture of the neuGRID provenance service and discuss how the CRISTAL system from CERN is being adapted to address the requirements of the project and then consider how a generalised approach for provenance management could emerge for more generic application to the (Health)Grid community.
214 - Luc Moreau 2015
As users become confronted with a deluge of provenance data, dedicated techniques are required to make sense of this kind of information. We present Aggregation by Provenance Types, a provenance graph analysis that is capable of generating provenance graph summaries. It proceeds by converting provenance paths up to some length k to attributes, referred to as provenance types, and by grouping nodes that have the same provenance types. The summary also includes numeric values representing the frequency of nodes and edges in the original graph. A quantitative evaluation and a complexity analysis show that this technique is tractable; with small values of k, it can produce useful summaries and can help detect outliers. We illustrate how the generated summaries can further be used for conformance checking and visualization.
Scientific workflow systems increasingly store provenance information about the module executions used to produce a data item, as well as the parameter settings and intermediate data items passed between module executions. However, authors/owners of workflows may wish to keep some of this information confidential. In particular, a module may be proprietary, and users should not be able to infer its behavior by seeing mappings between all data inputs and outputs. The problem we address in this paper is the following: Given a workflow, abstractly modeled by a relation R, a privacy requirement Gamma and costs associated with data. The owner of the workflow decides which data (attributes) to hide, and provides the user with a view R which is the projection of R over attributes which have not been hidden. The goal is to minimize the cost of hidden data while guaranteeing that individual modules are Gamma -private. We call this the secureview problem. We formally define the problem, study its complexity, and offer algorithmic solutions.
231 - Xing Niu , Ziyu Liu , Pengyuan Li 2021
Database systems analyze queries to determine upfront which data is needed for answering them and use indexes and other physical design techniques to speed-up access to that data. However, for important classes of queries, e.g., HAVING and top-k queries, it is impossible to determine up-front what data is relevant. To overcome this limitation, we develop provenance-based data skipping (PBDS), a novel approach that generates provenance sketches to concisely encode what data is relevant for a query. Once a provenance sketch has been captured it is used to speed up subsequent queries. PBDS can exploit physical design artifacts such as indexes and zone maps. Our approach significantly improves performance for both disk-based and main-memory database systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا