Influence of magnetic field offsets on the resistance of magnetic barriers in two-dimensional electron gases


Abstract in English

Magnetic barriers in two-dimensional electron gases are shifted in B space by homogeneous, perpendicular magnetic fields. The magnetoresistance across the barrier shows a characteristic asymmetric dip in the regime where the polarity of the homogeneous magnetic field is opposite to that one of the magnetic barrier. The measurements are in quantitative agreement with semiclassical simulations, which reveal that the magnetoresistance originates from the interplay of snake orbits with E x B drift at the edges of the Hall bar and with elastic scattering.

Download