Any group $G$ gives rise to a 2-group of inner automorphisms, $mathrm{INN}(G)$. It is an old result by Segal that the nerve of this is the universal $G$-bundle. We discuss that, similarly, for every 2-group $G_{(2)}$ there is a 3-group $mathrm{INN}(G_{(2)})$ and a slightly smaller 3-group $mathrm{INN}_0(G_{(2)})$ of inner automorphisms. We describe these for $G_{(2)}$ any strict 2-group, discuss how $mathrm{INN}_0(G_{(2)})$ can be understood as arising from the mapping cone of the identity on $G_{(2)}$ and show that its underlying 2-groupoid structure fits into a short exact sequence $G_{(2)} to mathrm{INN}_0(G_{(2)}) to Sigma G_{(2)}$. As a consequence, $mathrm{INN}_0(G_{(2)})$ encodes the properties of the universal $G_{(2)}$ 2-bundle.