Frequency shifts and nuclear relaxations of 13C NMR of the metal-insulator alternating material, (Me-3,5-DIP)[Ni(dmit)2]2, are presented. The NMR absorption lines originating from metallic and insulating layers are well resolved, which evidences the coexistence of localized spins (pi_loc) and conduction pi-electrons. The insulating layer is newly found to undergo antiferromagnetic long range order at about 2.5 K, suggesting emergence of S=1/2 Mott insulator. In the metallic layer, we found significant suppressions of static and dynamical susceptibilities of conduction electrons below 35 K, where antiferromagnetic correlation in the insulating layer evolves. We propose a dynamical effect through strong pi-pi_loc coupling between the metallic and insulating layers as an origin of the reduction of the density of states.