Do you want to publish a course? Click here

Cosmic rays from thermal sources

152   0   0.0 ( 0 )
 Added by Grzegorz Wilk
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Energy spectrum of cosmic rays (CR) exhibits power-like behavior with very characteristic knee structure. We consider a generalized statistical model for the production process of cosmic rays which accounts for such behavior in a natural way either by assuming existence of temperature fluctuations in the source of CR, or by assuming specific temperature distribution of CR sources. Both possibilities yield the so called Tsallis statistics and lead to the power-like distribution. We argue that the knee structure arises as result of abrupt change of fluctuations in the source of CR. Its possible origin is briefly discussed.



rate research

Read More

The study of the transition between galactic and extragalactic cosmic rays can shed more light on the end of the Galactic cosmic rays spectrum and the beginning of the extragalactic one. Three models of transition are discussed: ankle, dip and mixed composition models. All these models describe the transition as an intersection of a steep galactic component with a flat extragalactic one. Severe bounds on these models are provided by the Standard Model of Galactic Cosmic Rays according to which the maximum acceleration energy for Iron nuclei is of the order of $E_{rm Fe}^{rm max} approx 1times 10^{17}$ eV. In the ankle model the transition is assumed at the ankle, a flat feature in the all particle spectrum which observationally starts at energy $E_a sim (3 - 4)times 10^{18}$ eV. This model needs a new high energy galactic component with maximum energy about two orders of magnitude above that of the Standard Model. The origin of such component is discussed. As observations are concerned there are two signatures of the transition: change of energy spectra and mass composition. In all models a heavy galactic component is changed at the transition to a lighter or proton component.
We measure the correlation between sky coordinates of the Swift BAT catalogue of active galactic nuclei with the arrival directions of the highest energy cosmic rays detected by the Auger Observatory. The statistically complete, hard X-ray catalogue helps to distinguish between AGN and other source candidates that follow the distribution of local large-scale structure. The positions of the full catalogue are marginally uncorrelated with the cosmic ray arrival directions, but when weighted by their hard X-ray flux, AGN within 100 Mpc are correlated at a significance level of 98 per cent. This correlation sharply decreases for sources beyond ~100 Mpc, suggestive of a GZK suppression. We discuss the implications for determining the mechanism that accelerates particles to these extreme energies in excess of 10^19 eV.
We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space -- unless the baryonic loading is much larger than previously anticipated.
We explore acceleration of ions in the Quark Nova (QN) scenario, where a neutron star experiences an explosive phase transition into a quark star (born in the propeller regime). In this picture, two cosmic ray components are isolated: one related to the randomized pulsar wind and the other to the propelled wind, both boosted by the ultra-relativistic Quark Nova shock. The latter component acquires energies $10^{15} {rm eV}<E<10^{18} {rm eV}$ while the former, boosted pulsar wind, achieves ultra-high energies $E> 10^{18.6}$ eV. The composition is dominated by ions present in the pulsar wind in the energy range above $10^{18.6}$ eV, while at energies below $10^{18}$ eV the propelled ejecta, consisting of the fall-back neutron star crust material from the explosion, is the dominant one. Added to these two components, the propeller injects relativistic particles with Lorentz factors $Gamma_{rm prop.} sim 1-1000$, later to be accelerated by galactic supernova shocks. The QN model appears to be able to account for the extragalactic cosmic rays above the ankle and to contribute a few percent of the galactic cosmic rays below the ankle. We predict few hundred ultra-high energy cosmic ray events above $10^{19}$ eV for the Pierre Auger detector per distant QN, while some thousands are predicted for the proposed EUSO and OWL detectors.
The gamma-ray fluxes observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source is well fitted by the secondary photons coming from Dark Matter (DM) annihilation in particle-antiparticle standard model pairs over a diffuse power-law background. The spectral features of the signal are consistent with different channels: light quarks, electro-weak gauge bosons and top-antitop production. The amount of photons and morphology of the signal localized within a region of few parsecs, require compressed DM profiles as those resulting from baryonic contraction, which offer large enhancements in the signal over DM alone simulations. The fits return a heavy WIMP, with a mass above 10 TeV, but well below the unitarity limit for thermal relic annihilation. The fitted background spectral index is compatible with the Fermi-Large Area Telescope (LAT) data from the same region. This possibility can be potentially tested with the observations of other high energy cosmic rays.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا