Do you want to publish a course? Click here

Unusual heavy-mass nearly ferromagnetic state with a surprisingly large Wilson ratio in the double layered ruthenates (Sr$_{1-x}$Ca$_{x}$)$_{3}$Ru$_{2}$O$_{7}$

119   0   0.0 ( 0 )
 Added by Zhe Qu
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report an unusual nearly ferromagnetic, heavy-mass state with a surprisingly large Wilson ratio $R_{textrm{w}}$ (e.g., $R_{textrm{w}}sim$ 700 for $x =$ 0.2) in double layered ruthenates (Sr$_{1-x}$Ca$_{x}$)$_{3}$Ru$_{2}$O$_{7}$ with 0.08 $< x <$ 0.4. This state does not evolve into a long-range ferromagnetically ordered state despite considerably strong ferromagnetic correlations, but freezes into a cluster-spin-glass at low temperatures. In addition, evidence of non-Fermi liquid behavior is observed as the spin freezing temperature of the cluster-spin-glass approaches zero near $x approx$ 0.1. We discuss the origin of this unique magnetic state from the Fermi surface information probed by Hall effect measurements.

rate research

Read More

With x-ray absorption spectroscopy we investigated the orbital reconstruction and the induced ferromagnetic moment of the interfacial Cu atoms in YBa$_2$Cu$_3$O$_{7}$/La$_{2/3}$Ca$_{1/3}$MnO$_3$ (YBCO/LCMO) and La$_{2-x}$Sr$_{x}$CuO$_4$/La$_{2/3}$Ca$_{1/3}$MnO$_3$ (LSCO/LCMO) multilayers. We demonstrate that these electronic and magnetic proximity effects are coupled and are common to these cuprate/manganite multilayers. Moreover, we show that they are closely linked to a specific interface termination with a direct Cu-O-Mn bond. We furthermore show that the intrinsic hole doping of the cuprate layers and the local strain due to the lattice mismatch between the cuprate and manganite layers are not of primary importance. These findings underline the central role of the covalent bonding at the cuprate/manganite interface in defining the spin-electronic properties.
108 - L. Seetha Lakshmi 2003
This paper is in continuation of our previous work on the structural, electrical and magnetic properties of Ru doped La(0.67)Ca(0.33)MnO(3) compounds (Ref.: L.Seetha Lakshmi et.al, J. Magn. Magn. Mater. 257, 195 (2003)). Here we report the results of magnetotransport measurements on La(0.67)Ca(0.33)Mn(1-x)Ru(x)O(3) (0<x< 0.1) compounds in the light of proposed magnetic phase separation.
We study magnetic and multiferroic behavior in Ca$_3$Co$_{2-x}$Mn$_{x}$O$_6$ ($x sim$0.97) by high-field measurements of magnetization ($M$), magnetostriction ($L$($H$)/$L$), electric polarization ($P$), and magnetocaloric effect. This study also gives insight into the zero and low magnetic field magnetic structure and magnetoelectric coupling mechanisms. We measured $M$ and $Delta$$L$/$L$ up to pulsed magnetic fields of 92 T, and determined the saturation moment and field. On the controversial topic of the spin states of Co$^{2+}$ and Mn$^{4+}$ ions, we find evidence for $S$ = 3/2 spins for both ions with no magnetic field-induced spin-state crossovers. Our data also indicate that Mn$^{4+}$ spins are quasi-isotropic and develop components in the $ab$-plane in applied magnetic fields of 10 T. These spins cant until saturation at 85 T whereas the Ising Co$^{2+}$ spins saturate by 25 T. Furthermore, our results imply that mechanism for suppression of electric polarization with magnetic fields near 10 T is flopping of the Mn$^{4+}$ spins into the $ab$-plane, indicating that appropriate models must include the coexistence of Ising and quasi-isotropic spins.
Non-equilibrium steady state (NESS) conditions induced by DC current can alter the physical properties of strongly correlated electron systems (SCES). In this regard, it was recently shown that DC current can trigger novel electronic states, such as current-induced diamagnetism, which cannot be realized in equilibrium conditions. However, reversible control of diamagnetism has not been achieved yet. Here, we demonstrate reversible in situ control between a Mott insulating state and a diamagnetic semimetal-like state by DC current in the Ti-substituted bilayer ruthenate Ca$_3$(Ru$_{1-x}$Ti$_x$)$_2$O$_7$ ($x=0.5$%). By performing simultaneous magnetic and resistive measurements, we map out the temperature vs current-density phase diagram in the NESS of this material. The present results open up the possibility of creating novel electronic states in a variety of SCES under DC current.
73 - C. Tan , Z. F. Ding , J. Zhang 2019
Hidden magnetic order of Sr$_2$Ir$_{1-x}$Rh$_x$O$_4$, $x = 0.05$ and 0.1, has been studied using muon spin relaxation spectroscopy. In zero applied field and weak longitudinal fields ($mu_0H_L lesssim 2$~mT), muon spin relaxation data can be well described by exponentially-damped static Lorentzian Kubo-Toyabe functions, indicating that static and dynamic local fields coexist at each muon site. For $mu_0H_L gtrsim 2$~mT, the static rate is completely decoupled, and the exponential decay is due to dynamic spin fluctuations. In both zero field and $mu_0H_L = 1$--2~mT, the temperature dependencies of the exponential muon spin relaxation rate exhibit maxima at 215~K for $x = 0.05$ and 175~K for $x = 0.1$, suggesting critical slowing down of electronic spin fluctuations. The field dependencies of the dynamic spin fluctuation rates can be well described by the Redfield relation. The correlation time of this electronic spin fluctuation is in the range of~2--5~ns for Sr$_2$Ir$_{0.9}$Rh$_{0.1}$O$_4$, and shorter than 2~ns for Sr$_2$Ir$_{0.95}$Rh$_{0.05}$O$_4$. The rms fluctuating field is on the order of 1 mT, which is consistent with the polarized neutron diffraction cross-section.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا