Do you want to publish a course? Click here

Evolution of a Powerful Radio Loud Quasar 3C186 and its Impact on the Cluster Environment at z=1

134   0   0.0 ( 0 )
 Added by Aneta Siemiginowska
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

X-ray cluster emission has been observed mainly in clusters with inactive cD galaxies (L_bol ~1E40-1E43erg/sec), which do not show signs of accretion onto a SMBH. Our recent Chandra discovery of ~100kpc scale diffuse X-ray emission revealed the presence of an X-ray cluster associated with the radio loud quasar 3C186 at redshift z=1.1 and suggests interactions between the quasar and the cluster. In contrast to the majority of X-ray clusters the 3C186 cluster contains a quasar in the center whose radiative power alone exceeds that which would be needed to quench the cluster cooling. We present the Chandra X-ray data and new deep radio and optical images of this cluster. The 3C186 quasar is a powerful Compact Steep Spectrum radio source expanding into the cluster medium. The 2arcsec radio jet is unresolved in the Chandra observation, but its direction is orthogonal to the elliptical surface brightness of the cluster. The radio data show the possible presence of old radio lobes on 10 arcsec scale in the direction of the radio jet. We discuss the nature of this source in the context of intermittent radio activity and the interaction of the young expanding radio source with the cluster medium.



rate research

Read More

We present high angular resolution imaging ($23.9 times 11.3$ mas, $138.6 times 65.5$ pc) of the radio-loud quasar PSO~J352.4034$-$15.3373 at $z=5.84$ with the Very Long Baseline Array (VLBA) at 1.54 GHz. This quasar has the highest radio-to-optical flux density ratio at such a redshift, making it the radio-loudest source known to date at $z sim 6$. The VLBA observations presented here resolve this quasar into multiple components with an overall linear extent of 1.62 kpc ($0rlap{.}{}28$) and with a total flux density of $6.57 pm 0.38$ mJy, which is about half of the emission measured at a much lower angular resolution. The morphology of the source is comparable with either a radio core with a one-sided jet, or a compact or a medium-size Symmetric Object (CSO/MSO). If the source is a CSO/MSO, and assuming an advance speed of $0.2c$, then the estimated kinematic age is $sim 10^4$ yr.
We present the first results from a new, deep (200ks) Chandra observation of the X-ray luminous galaxy cluster surrounding the powerful (L ~10^47 erg/s), high-redshift (z=1.067), compact-steep-spectrum radio-loud quasar 3C186. The diffuse X-ray emission from the cluster has a roughly ellipsoidal shape and extends out to radii of at least ~60 arcsec (~500 kpc). The centroid of the diffuse X-ray emission is offset by 0.68(+/-0.11) arcsec (5.5+/-0.9 kpc) from the position of the quasar. We measure a cluster mass within the radius at which the mean enclosed density is 2500 times the critical density, r_2500=283(+18/-13)kpc, of 1.02 (+0.21/-0.14)x10^14 M_sun. The gas mass fraction within this radius is f_gas=0.129(+0.015/-0.016). This value is consistent with measurements at lower redshifts and implies minimal evolution in the f_gas(z) relation for hot, massive clusters at 0<z<1.1. The measured metal abundance of 0.42(+0.08/-0.07) Solar is consistent with the abundance observed in other massive, high redshift clusters. The spatially-resolved temperature profile for the cluster shows a drop in temperature, from kT~8 keV to kT~3 keV, in its central regions that is characteristic of cooling core clusters. This is the first spectroscopic identification of a cooling core cluster at z>1. We measure cooling times for the X-ray emitting gas at radii of 50 kpc and 25 kpc of 1.7(+/-0.2)x10^9 years and 7.5(+/-2.6)x 10^8 years, as well as a nominal cooling rate (in the absence of heating) of 400(+/-190)M_sun/year within the central 100 kpc. In principle, the cooling gas can supply enough fuel to support the growth of the supermassive black hole and to power the luminous quasar. The radiative power of the quasar exceeds by a factor of 10 the kinematic power of the central radio source, suggesting that radiative heating may be important at intermittent intervals in cluster cores.
219 - E. Belsole 2006
Active galaxies are the most powerful engines in the Universe for converting gravitational energy into radiation, and radio galaxies and radio-loud quasars are highly luminous and can be detected across the Universe. The jets that characterise them need a medium to propagate into, and thus radio galaxies at high redshift point to gaseous atmospheres on scales of at least the radio source diameter, which in many cases can reach hundreds of kpc. The variation with redshift of X-ray properties of radio-selected clusters provides an important test of structure formation theories as, unlike X-ray selection, this selection is not biased towards the most luminous clusters in the Universe. We present new results from a sample of 19 luminous radio galaxies at redshifts between 0.5 and 1. The properties of the gaseous atmosphere around these sources as mapped by Chandra and XMM-Newton observations are discussed. By combining these with observations at radio frequency, we will be able to draw conclusions on cluster size, density, and pressure balance between the radio source and the environment in which it lies.
The interactions between radio jets and the interstellar medium play a defining role for the co-evolution of central supermassive black holes and their host galaxies, but observational constraints on these feedback processes are still very limited at redshifts $z > 2$. We investigate the radio-loud quasar PSO J352.4034-15.3373 at $z sim 6$ at the edge of the Epoch of Reionization. This quasar is among the most powerful radio emitters and the first one with direct evidence of extended radio jets ($sim$1.6 kpc) at these high redshifts. We analyze NOEMA and ALMA millimeter data targeting the CO (6-5) and [CII] far-infrared emission lines, respectively, and the underlying continuum. The broad $440pm 80$ km s$^{-1}$ and marginally resolved [CII] emission line yields a systemic redshift of $z!=!5.832 pm 0.001$. Additionally, we report a strong 215 MHz radio continuum detection, $88pm 7$ mJy, using the GMRT. This measurement significantly improves the constraints at the low-frequency end of the spectral energy distribution of this quasar. In contrast to what is typically observed in high-redshift radio-quiet quasars, we show that cold dust emission alone cannot reproduce the millimeter continuum measurements. This is evidence that the strong synchrotron emission from the quasar contributes substantially to the emission even at millimeter (far-infrared in the rest-frame) wavelengths. This quasar is an ideal system to probe the effects of radio jets during the formation of a massive galaxy within the first Gyr of the Universe.
Radio sources at the highest redshifts can provide unique information on the first massive galaxies and black holes, the densest primordial environments, and the epoch of reionization. The number of astronomical objects identified at z>6 has increased dramatically over the last few years, but previously only three radio-loud (R2500>10) sources had been reported at z>6, with the most distant being a quasar at z=6.18. Here we present the discovery and characterization of P172+18, a radio-loud quasar at z=6.823. This source has an MgII-based black hole mass of ~3x10^8 Msun and is one of the fastest accreting quasars, consistent with super-Eddington accretion. The ionized region around the quasar is among the largest measured at these redshifts, implying an active phase longer than the average lifetime of the z>6 quasar population. From archival data, there is evidence that its 1.4 GHz emission has decreased by a factor of two over the last two decades. The quasars radio spectrum between 1.4 and 3.0 GHz is steep (alpha=-1.31) and has a radio-loudness parameter R2500~90. A second steep radio source (alpha=-0.83) of comparable brightness to the quasar is only 23.1 away (~120 kpc at z=6.82; projection probability <2%), but shows no optical or near-infrared counterpart. Further follow-up is required to establish whether these two sources are physically associated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا