Do you want to publish a course? Click here

Magnetic Interaction in the Geometrically Frustrated Triangular Lattice Antiferromagnet $rm CuFeO_2$

167   0   0.0 ( 0 )
 Added by Feng Ye
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The spin wave excitations of the geometrically frustrated triangular lattice antiferromagnet (TLA) $rm CuFeO_2$ have been measured using high resolution inelastic neutron scattering. Antiferromagnetic interactions up to third nearest neighbors in the ab plane (J_1, J_2, J_3, with $J_2/J_1 approx 0.44$ and $J_3/J_1 approx 0.57$), as well as out-of-plane coupling (J_z, with $J_z/J_1 approx 0.29$) are required to describe the spin wave dispersion relations, indicating a three dimensional character of the magnetic interactions. Two energy dips in the spin wave dispersion occur at the incommensurate wavevectors associated with multiferroic phase, and can be interpreted as dynamic precursors to the magnetoelectric behavior in this system.



rate research

Read More

203 - M. Swanson , J.T. Haraldsen , 2009
This work examines the critical anisotropy required for the local stability of the collinear ground states of a geometrically-frustrated triangular-lattice antiferromagnet (TLA). Using a Holstein-Primakoff expansion, we calculate the spin-wave frequencies for the 1, 2, 3, 4, and 8-sublattice (SL) ground states of a TLA with up to third neighbor interactions. Local stability requires that all spin-wave frequencies are real and positive. The 2, 4, and 8-SL phases break up into several regions where the critical anisotropy is a different function of the exchange parameters. We find that the critical anisotropy is a continuous function everywhere except across the 2-SL/3-SL and 3-SL/4-SL phase boundaries, where the 3-SL phase has the higher critical anisotropy.
Yb- and Ce-based delafossites were recently identified as effective spin-1/2 antiferromagnets on the triangular lattice. Several Yb-based systems, such as NaYbO2, NaYbS2, and NaYbSe2, exhibit no long-range order down to the lowest measured temperatures and therefore serve as putative candidates for the realization of a quantum spin liquid. However, their isostructural Ce-based counterpart KCeS2 exhibits magnetic order below TN = 400 mK, which was so far identified only in thermodynamic measurements. Here we reveal the magnetic structure of this long-range ordered phase using magnetic neutron diffraction. We show that it represents the so-called stripe-yz type of antiferromagnetic order with spins lying approximately in the triangular-lattice planes orthogonal to the nearest-neighbor Ce-Ce bonds. No structural lattice distortions are revealed below TN, indicating that the triangular lattice of Ce3+ ions remains geometrically perfect down to the lowest temperatures. We propose an effective Hamiltonian for KCeS2, based on a fit to the results of ab initio calculations, and demonstrate that its magnetic ground state matches the experimental spin structure.
262 - K. Y. Zeng , Long Ma , Y. X. Gao 2019
In this paper, we study the spin excitation properties of the frustrated triangular-lattice antiferromagnet Yb(BaBO$_3$)$_3$ with nuclear magnetic resonance. From the spectral analysis, neither magnetic ordering nor spin freezing is observed with temperature down to $T=0.26$ K, far below its Curie-Weiss temperature $|theta_w|sim2.3$ K. From the nuclear relaxation measurement, precise temperature-independent spin-lattice relaxation rates are observed at low temperatures under a weak magnetic field, indicating the gapless spin excitations. Further increasing the field intensity, we observe a spin excitation gap with the gap size proportional to the field intensity. These phenomena suggest a very unusual strongly correlated quantum disordered phase, and the implications for the quantum spin liquid state are further discussed.
Here we present a neutron scattering-based study of magnetic excitations and magnetic order in NaYbO$_2$ under the application of an external magnetic field. The crystal electric field-split $J = 7/2$ multiplet structure is determined, revealing a mixed $|m_z>$ ground state doublet and is consistent with a recent report Ding et al. [1]. Our measurements further suggest signatures of exchange effects in the crystal field spectrum, manifested by a small splitting in energy of the transition into the first excited doublet. The field-dependence of the low-energy magnetic excitations across the transition from the quantum disordered ground state into the fluctuation-driven ordered regime is analyzed. Signs of a first-order phase transition into a noncollinear ordered state are revealed at the upper-field phase boundary of the ordered regime, and higher order magnon scattering, suggestive of strong magnon-magnon interactions, is resolved within the previously reported $up-up-down$ phase. Our results reveal a complex phase diagram of field-induced order and spin excitations within NaYbO$_2$ and demonstrate the dominant role of quantum fluctuations cross a broad range of fields within its interlayer frustrated triangular lattice.
196 - M. Pregelj , A. Zorko , O. Zaharko 2013
The layered FeTe2O5Cl compound was studied by specific-heat, muon spin relaxation, nuclear magnetic resonance, dielectric, as well as neutron and synchrotron x-ray diffraction measurements, and the results were compared to isostructural FeTe2O5Br. We find that the low-temperature ordered state, similarly as in FeTe2O5Br, is multiferroic - the elliptical amplitude-modulated magnetic cycloid and the electric polarization simultaneously develop below 11 K. However, compared to FeTe2O5Br, the magnetic elliptical envelop rotates by 75(4) deg and the orientation of the electric polarization is much more sensitive to the applied electric field. We propose that the observed differences between the two isostructural compounds arise from geometric frustration, which enhances the effects of otherwise subtle Fe3+ (S = 5/2) magnetic anisotropies. Finally, x-ray diffraction results imply that, on the microscopic scale, the magnetoelectric coupling is driven by shifts of the O1 atoms, as a response to the polarization of the Te4+ lone-pair electrons involved in the Fe-O-Te-O-Fe exchange bridges.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا