Do you want to publish a course? Click here

Spin and charge orders and their hole-doping dependence in single layered cobaltate La2-xCaxCoO4(0.3<x<0.8)

197   0   0.0 ( 0 )
 Added by Kazumasa Horigane
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Neutron scattering experiments were performed on single crystals of layered cobalt-oxides La2-xCaxCoO4 (LCCO) to characterize the charge and spin orders in a wide hole-doping range of 0.3<x<0.8. For a commensurate value of x=0.5 in (H,0,L) plane, two types of superlattice reflections concomitantly appear at low temperature; one corresponds to a checkerboard charge ordered pattern of Co2+/Co3+ ions and the other is magnetic in origin. Further, the latter magnetic-superlattice peaks show two types of symmetry in the reflections, suggesting antiferromagnetic-stacking (AF-S) and ferromagnetic-stacking (F-S) patterns of spins along the c direction. From the hole-doping dependence, the in-plane correlation lengths of both charge and spin orders are found to give a maximum at x=0.5. These features are the same with those of x=0.5 in La1-xSr1+xMnO4 (LSMO), a typical checkerboard and spin ordered compound. However, in (H,H,L) plane, we found a magnetic scattering peak at Q=(1/4,1/4,1/2) position below TN. This magnetic peak can not be understood by considering the Co2+ spin configuration, suggesting that this peak is originated from Co3+ spin order. By analyzing these superlattice reflections, we found that they are originated from high-spin state of Co3+ spin order.



rate research

Read More

Recent experimental discoveries have brought a diverse set of broken symmetry states to the center stage of research on cuprate superconductors. Here, we focus on a thematic understanding of the diverse phenomenology by exploring a strong-coupling mechanism of symmetry breaking driven by frustration of antiferromagnetic order. We achieve this through a variational study of a three-band model of the CuO$_2$ plane with Kondo-type exchange couplings between doped oxygen holes and classical copper spins. Two main findings from this strong-coupling multi-band perspective are 1) that the symmetry hierarchy of spin stripe, charge stripe, intra-unit-cell nematic order and isotropic phases are all accessible microscopically within the model, 2) many symmetry-breaking patterns compete with energy differences within a few meV per Cu atom to produce a rich phase diagram. These results indicate that the diverse phenomenology of broken-symmetry states in hole-doped antiferromagnetic charge-transfer insulators may indeed arise from hole-doped frustration of antiferromagnetism.
We investigate the interplay between spin and orbital correlations in monolayer and bilayer manganites using an effective spin-orbital t-J model which treats explicitly the e_g orbital degrees of freedom coupled to classical t_{2g} spins. Using finite clusters with periodic boundary conditions, the orbital many-body problem is solved by exact diagonalization, either by optimizing spin configuration at zero temperature, or by using classical Monte-Carlo for the spin subsystem at finite temperature. In undoped two-dimensional clusters, a complementary behavior of orbital and spin correlations is found - the ferromagnetic spin order coexists with alternating orbital order, while the antiferromagnetic spin order, triggered by t_{2g} spin superexchange, coexists with ferro-orbital order. With finite crystal field term, we introduce a realistic model for La_{1-x}Sr_{1+x}MnO_4, describing a gradual change from predominantly out-of-plane 3z^2-r^2 to in-plane x^2-y^2 orbital occupation under increasing doping. The present electronic model is sufficient to explain the stability of the CE phase in monolayer manganites at doping x=0.5, and also yields the C-type antiferromagnetic phase found in Nd_{1-x}Sr_{1+x}MnO_4 at high doping. Also in bilayer manganites magnetic phases and the accompanying orbital order change with increasing doping. Here the model predicts C-AF and G-AF phases at high doping x>0.75, as found experimentally in La_{2-2x}Sr_{1+2x}Mn_2O_7.
We have performed non-resonant x-ray diffraction, resonant soft and hard x-ray magnetic diffraction, soft x-ray absorption and x-ray magnetic circular dichroism measurements to clarify the electronic and magnetic states of the Co3+ ions in GdBaCo2O5.5. Our data are consistent with a 3+ Py Co HS state at the pyramidal sites and a 3+ Oc Co LS state at the octahedral sites. The structural distortion, with a doubling of the a axis (2ap x 2ap x 2ap cell), shows alternating elongations and contractions of the pyramids and indicates that the metal-insulator transition is associated with orbital order in the t2g orbitals of the 3+ Py Co HS state. This distortion corresponds to an alternating ordering of xz and yz orbitals along the a and c axes for the 3+ Py Co . The orbital ordering and pyramidal distortion lead to deformation of the octahedra, but the 3+ Oc Co LS state does not allow an orbital order to occur for the 3+ Oc Co ions. The soft x-ray magnetic diffraction results indicate that the magnetic moments are aligned in the ab plane but are not parallel to the crystallographic a or b axes. The orbital order and the doubling of the magnetic unit cell along the c axis support a non-collinear magnetic structure. The x-ray magnetic circular dichroism data indicate that there is a large orbital magnetic contribution to the total ordered Co moment.
76 - Z.Y. Weng , D.N. Sheng , 2001
In the presence of nonlocal phase shift effects, a quasiparticle can remain topologically stable even in a spin-charge separation state due to the confinement effect introduced by the phase shifts at finite doping. True deconfinement only happens in the zero-doping limit where a bare hole can lose its integrity and decay into holon and spinon elementary excitations. The Fermi surface structure is completely different in these two cases, from a large band-structure-like one to four Fermi points in one-hole case, and we argue that the so-called underdoped regime actually corresponds to a situation in between.
We investigate the low temperature magnetic field dependences of both the resistivity and the magnetization in the misfit cobaltate Ca3Co4O9 from 60 K down to 2 K. The measured negative magnetoresistance reveals a scaling behavior with the magnetization which demonstrates a spin dependent diffusion mechanism. This scaling is also found to be consistent with a shadowed metalliclike conduction over the whole temperature range. By explaining the observed transport crossover, this result shed a new light on the nature of the elementary excitations relevant to the transport.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا