No Arabic abstract
The nature of the synchrotron superbubble in the IC 10 galaxy is discussed using the results of our investigation of its ionized gas structure, kinematics, and emission spectrum from observations made with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences, and based on our analysis of the radio emission of the region. The hypernova explosion is shown to be a more plausible mechanism of the formation of the synchrotron superbubble compared with the earlier proposed model of multiple supernova explosions. A compact remnant of this hypernova may be identified with the well known X-ray binary X-1 -- an accreting black hole.
We present here the observation of the Cygnus Superbubble (CSB) using the Solid-state slit camera (SSC) aboard the Monitor of All-sky X-ray Image. The CSB is a large diffuse structure in the Cygnus region with enhanced soft X-ray emission. By utilizing the CCD spectral resolution of the SSC, we detect Fe, Ne, Mg emission lines from the CSB for the first time. The best fit model implies thin hot plasma of kT ~ 0.3 keV with depleted abundance of 0.26 +/- 0.1 solar. Joint spectrum fitting of the ROSAT PSPC data and MAXI/SSC data enables us to measure precise values of NH and temperature inside the CSB. The results show that all of the regions in the CSB have similar NH and temperature, indicating that the CSB is single unity. The energy budgets calculation suggests that 2-3 Myrs of stellar wind from the Cyg OB2 is enough to power up the CSB, whereas due to its off center position, the origin of the CSB is most likely a Hypernova.
Photometric and spectroscopic data of the energetic Type Ic supernova (SN) 2002ap are presented, and the properties of the SN are investigated through models of its spectral evolution and its light curve. The SN is spectroscopically similar to the hypernova SN 1997ef. However, its kinetic energy [$sim (4-10) times 10^{51}$ erg] and the mass ejected (2.5-5 $M_{odot}$) are smaller, resulting in a faster-evolving light curve. The SN synthesized $sim 0.07 M_{odot}$ of $^{56}$Ni, and its peak luminosity was similar to that of normal SNe. Brightness alone should not be used to define a hypernova, whose defining character, namely very broad spectral features, is the result of a high kinetic energy. The likely main-sequence mass of the progenitor star was 20-25 $M_{odot}$, which is also lower than that of both hypernovae SNe 1997ef and 1998bw. SN 2002ap appears to lie at the low-energy and low-mass end of the hypernova sequence as it is known so far. Observations of the nebular spectrum, which is expected to dominate by summer 2002, are necessary to confirm these values.
The properties of the bright and energetic Type Ic SN 1997ef are investigated using a Monte Carlo spectrum synthesis code. Analysis of the earliest spectra is used to determine the time of outburst. The changing features of the spectrum and the light curve are used to probe the ejecta and to determine their composition, verifying the results of explosion calculations. Since synthetic spectra computed using our best explosion model CO100 are only moderately good reproductions of the observations, the inverse approach is adopted, and a density structure is derived by demanding that it gives the best possible fit to the observed spectrum at every epoch analysed. It is found that the density structure of model CO100 is adequate at intermediate velocities (5000--25000 km/s), but that a slower density decline ($rho propto r^{-4}$) is required to obtain the extensive line blending at high velocities (25000--50000 km/s). The `best fit density distribution results in somewhat different parameters for the SN, namely an ejecta mass of 9.6$M_odot$ and an explosion kinetic energy of 1.75 x 10^{52} erg. The modified density structure is used to compute a synthetic light curve, which is found to agree very well with the observed bolometric light curve around maximum. The amount of radioactive $^{56}$Ni produced by the SN is confirmed at 0.13$M_odot$. In the context of an axisymmetric explosion, a somewhat smaller kinetic energy than that of SN 1998bw may have resulted from the non alignment of the symmetry axis of the SN and the line of sight. This might also explain the lack of evidence for a Gamma Ray Burst correlated with SN 1997ef.
The supernova SN 2002ap was discovered in the outer regions of the nearby spiral M74 on January 29.4 UT. Early photometric and spectroscopic observations indicate the supernova belongs to the class of Ic hypernova. Late time (After JD 2452500) light curve decay slopes are similar to that of the hypernovae SN 1997ef and SN 1998bw. We present here the $BVRI$ photometric light curves and colour evolutions of SN 2002ap to investigate the late time nature of the light curve.
Superbubbles are crucial for stellar feedback, with supposedly high (of the order of 10 per cent) thermalization rates. We combined multiband radio continuum observations from the Very Large Array (VLA) with Effelsberg data to study the non-thermal superbubble (NSB) in IC 10, a starburst dwarf irregular galaxy in the Local Group. Thermal emission was subtracted using a combination of Balmer H$alpha$ and VLA 32 GHz continuum maps. The bubbles non-thermal spectrum between 1.5 and 8.8 GHz displays curvature and can be well fitted with a standard model of an ageing cosmic ray electron population. With a derived equipartition magnetic field strength of $44pm 8 rmmu G$, and measuring the radiation energy density from Spitzer MIPS maps as $5pm 1times 10^{-11} rm erg, cm^{-3}$, we determine, based on the spectral curvature, a spectral age of the bubble of $1.0pm 0.3 rm Myr$. Analysis of the LITTLE THINGS HI data cube shows an expanding HI hole with 100 pc diameter and a dynamical age of $3.8pm 0.3 rm Myr$, centred to within 16 pc on IC 10 X-1, a massive stellar mass black hole ($M > 23 M_odot$). The results are consistent with the expected evolution for a superbubble with a few massive stars, where a very energetic event like a Type Ic supernova/hypernova has taken place about 1 Myr ago. We discuss alternatives to this interpretation.