Do you want to publish a course? Click here

Local dynamics and gravitational collapse of a self-gravitating magnetized Fermi gas

164   0   0.0 ( 0 )
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use the Bianchi-I spacetime to study the local dynamics of a magnetized self-gravitating Fermi gas. The set of Einstein-Maxwell field equations for this gas becomes a dynamical system in a 4-dimensional phase space. We consider a qualitative study and examine numeric solutions for the degenerate zero temperature case. All dynamic quantities exhibit similar qualitative behavior in the 3-dimensional sections of the phase space, with all trajectories reaching a stable attractor whenever the initial expansion scalar H_{0} is negative. If H_{0} is positive, and depending on initial conditions, the trajectories end up in a curvature singularity that could be isotropic(singular point) or anisotropic (singular line). In particular, for a sufficiently large initial value of the magnetic field it is always possible to obtain an anisotropic type of singularity in which the line points in the same direction of the field.



rate research

Read More

We examine the dynamics of a self--gravitating magnetized neutron gas as a source of a Bianchi I spacetime described by the Kasner metric. The set of Einstein-Maxwell field equations can be expressed as a dynamical system in a 4-dimensional phase space. Numerical solutions of this system reveal the emergence of a point--like singularity as the final evolution state for a large class of physically motivated initial conditions. Besides the theoretical interest of studying this source in a fully general relativistic context, the resulting idealized model could be helpful in understanding the collapse of local volume elements of a neutron gas in the critical conditions that would prevail in the center of a compact object.
We examine the dynamics of a self--gravitating magnetized electron gas at finite temperature near the collapsing singularity of a Bianchi-I spacetime. Considering a general and appropriate and physically motivated initial conditions, we transform Einstein--Maxwell field equations into a complete and self--consistent dynamical system amenable for numerical work. The resulting numerical solutions reveal the gas collapsing into both, isotropic (point-like) and anisotropic (cigar-like) singularities, depending on the initial intensity of the magnetic field. We provide a thorough study of the near collapse behavior and interplay of all relevant state and kinematic variables: temperature, expansion scalar, shear scalar, magnetic field, magnetization and energy density. A significant qualitative difference in the behavior of the gas emerges in the temperature range $hbox{T} sim10^{4}hbox{K}$ and $hbox{T}sim 10^{7}hbox{K}$.
We address the question whether a medium featuring $p + rho = 0$, dubbed $Lambda$- medium, has to be necessarily a cosmological constant. By using effective field theory, we show that this is not the case for a class of media comprising perfect fluids, solids and special super solids, providing an explicit construction. The low energy excitations are non trivial and lensing, the growth of large scale structures can be used to clearly distinguish $Lambda$-media from a cosmological constant.
We compute cosmological perturbations for a generic self-gravitating media described by four derivatively- coupled scalar fields. Depending on the internal symmetries of the action for the scalar fields, one can describe perfect fluids, superfluids, solids and supersolids media. Symmetries dictate both dynamical and thermodynamical properties of the media. Generically, scalar perturbations include, besides the gravitational potential, an additional non-adiabatic mode associated with the entropy per particle {sigma}. While perfect fluids and solids are adiabatic with {sigma} constant in time, superfluids and supersolids feature a non-trivial dynamics for {sigma}. Special classes of isentropic media with zero {sigma} can also be found. Tensor modes become massive for solids and supersolids. Such an effective approach can be used to give a very general and symmetry driven modelling of the dark sector.
118 - D. Manreza Paret 2008
The dynamics of a self-gravitating neutron gas in presence of a magnetic field is being studied taking the equation of state of a magnetized neutron gas obtained in a previous study [2]. We work in a Bianchi I spacetime characterized by a Kasner metric, this metric allow us to take into account the anisotropy that introduces the magnetic field. The set of Einstein-Maxwell field equations for this gas becomes a dynamical system in a 4-dimensional phase space. We get numerical solutions of the system. In particular there is a unique point like solution for different initial conditions. Physically this singular solution may be associated with the collapse of a local volume of neutron material within a neutron star.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا