Do you want to publish a course? Click here

Data-driven goodness-of-fit tests

216   0   0.0 ( 0 )
 Added by Mikhail Langovoy
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We propose and study a general method for construction of consistent statistical tests on the basis of possibly indirect, corrupted, or partially available observations. The class of tests devised in the paper contains Neymans smooth tests, data-driven score tests, and some types of multi-sample tests as basic examples. Our tests are data-driven and are additionally incorporated with model selection rules. The method allows to use a wide class of model selection rules that are based on the penalization idea. In particular, many of the optimal penalties, derived in statistical literature, can be used in our tests. We establish the behavior of model selection rules and data-driven tests under both the null hypothesis and the alternative hypothesis, derive an explicit detectability rule for alternative hypotheses, and prove a master consistency theorem for the tests from the class. The paper shows that the tests are applicable to a wide range of problems, including hypothesis testing in statistical inverse problems, multi-sample problems, and nonparametric hypothesis testing.



rate research

Read More

This paper has been temporarily withdrawn, pending a revised version taking into account similarities between this paper and the recent work of del Barrio, Gine and Utzet (Bernoulli, 11 (1), 2005, 131-189).
Survival Analysis and Reliability Theory are concerned with the analysis of time-to-event data, in which observations correspond to waiting times until an event of interest such as death from a particular disease or failure of a component in a mechanical system. This type of data is unique due to the presence of censoring, a type of missing data that occurs when we do not observe the actual time of the event of interest but, instead, we have access to an approximation for it given by random interval in which the observation is known to belong. Most traditional methods are not designed to deal with censoring, and thus we need to adapt them to censored time-to-event data. In this paper, we focus on non-parametric goodness-of-fit testing procedures based on combining the Steins method and kernelized discrepancies. While for uncensored data, there is a natural way of implementing a kernelized Stein discrepancy test, for censored data there are several options, each of them with different advantages and disadvantages. In this paper, we propose a collection of kernelized Stein discrepancy tests for time-to-event data, and we study each of them theoretically and empirically; our experimental results show that our proposed methods perform better than existing tests, including previous tests based on a kernelized maximum mean discrepancy.
The Ising model is one of the simplest and most famous models of interacting systems. It was originally proposed to model ferromagnetic interactions in statistical physics and is now widely used to model spatial processes in many areas such as ecology, sociology, and genetics, usually without testing its goodness of fit. Here, we propose various test statistics and an exact goodness-of-fit test for the finite-lattice Ising model. The theory of Markov bases has been developed in algebraic statistics for exact goodness-of-fit testing using a Monte Carlo approach. However, finding a Markov basis is often computationally intractable. Thus, we develop a Monte Carlo method for exact goodness-of-fit testing for the Ising model which avoids computing a Markov basis and also leads to a better connectivity of the Markov chain and hence to a faster convergence. We show how this method can be applied to analyze the spatial organization of receptors on the cell membrane.
148 - Nicolas Verzelen 2008
Let $(Y,(X_i)_{iinmathcal{I}})$ be a zero mean Gaussian vector and $V$ be a subset of $mathcal{I}$. Suppose we are given $n$ i.i.d. replications of the vector $(Y,X)$. We propose a new test for testing that $Y$ is independent of $(X_i)_{iin mathcal{I}backslash V}$ conditionally to $(X_i)_{iin V}$ against the general alternative that it is not. This procedure does not depend on any prior information on the covariance of $X$ or the variance of $Y$ and applies in a high-dimensional setting. It straightforwardly extends to test the neighbourhood of a Gaussian graphical model. The procedure is based on a model of Gaussian regression with random Gaussian covariates. We give non asymptotic properties of the test and we prove that it is rate optimal (up to a possible $log(n)$ factor) over various classes of alternatives under some additional assumptions. Besides, it allows us to derive non asymptotic minimax rates of testing in this setting. Finally, we carry out a simulation study in order to evaluate the performance of our procedure.
Networks describe the, often complex, relationships between individual actors. In this work, we address the question of how to determine whether a parametric model, such as a stochastic block model or latent space model, fits a dataset well and will extrapolate to similar data. We use recent results in random matrix theory to derive a general goodness-of-fit test for dyadic data. We show that our method, when applied to a specific model of interest, provides an straightforward, computationally fast way of selecting parameters in a number of commonly used network models. For example, we show how to select the dimension of the latent space in latent space models. Unlike other network goodness-of-fit methods, our general approach does not require simulating from a candidate parametric model, which can be cumbersome with large graphs, and eliminates the need to choose a particular set of statistics on the graph for comparison. It also allows us to perform goodness-of-fit tests on partial network data, such as Aggregated Relational Data. We show with simulations that our method performs well in many situations of interest. We analyze several empirically relevant networks and show that our method leads to improved community detection algorithms. R code to implement our method is available on Github.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا