Do you want to publish a course? Click here

OB Associations, Wolf-Rayet Stars, and the Origin of Galactic Cosmic Rays

340   0   0.0 ( 0 )
 Added by Walter Binns
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have measured the isotopic abundances of neon and a number of other species in the galactic cosmic rays (GCRs) using the Cosmic Ray Isotope Spectrometer (CRIS) aboard the ACE spacecraft. Our data are compared to recent results from two-component Wolf-Rayet (WR) models. The three largest deviations of galactic cosmic ray isotope ratios from solar-system ratios predicted by these models, 12C/16O, 22Ne/20Ne, and 58Fe/56Fe, are very close to those observed. All of the isotopic ratios that we have measured are consistent with a GCR source consisting of ~20% of WR material mixed with ~80% material with solar-system composition. Since WR stars are evolutionary products of OB stars, and most OB stars exist in OB associations that form superbubbles, the good agreement of our data with WR models suggests that OB associations within superbubbles are the likely source of at least a substantial fraction of GCRs. In previous work it has been shown that the primary 59Ni (which decays only by electron-capture) in GCRs has decayed, indicating a time interval between nucleosynthesis and acceleration of >10^5 yr.In this paper we suggest a scenario that should allow much of the 59Ni to decay in the OB association environment and conclude that the hypothesis of the OB association origin of cosmic rays appears to be viable.



rate research

Read More

The abundances of neon isotopes in the galactic cosmic rays (GCRs) are reported using data from the Cosmic Ray Isotope Spectrometer (CRIS) aboard the Advanced Composition Explorer (ACE). We compare our ACE-CRIS data for neon and refractory isotope ratios, and data from other experiments, with recent results from two-component Wolf-Rayet (WR) models. The three largest deviations of GCR isotope ratios from solar-system ratios predicted by these models are indeed present in the GCRs. Since WR stars are evolutionary products of OB stars, and most OB stars exist in OB associations that form superbubbles, the good agreement of these data with WR models suggests that superbubbles are the likely source of at least a substantial fraction of GCRs.
84 - Jorick S. Vink 2015
The Wolf-Rayet (WR) phenomenon is widespread in astronomy. It involves classical WRs, very massive stars (VMS), WR central stars of planetary nebula CSPN [WRs], and supernovae (SNe). But what is the root cause for a certain type of object to turn into an emission-line star? In this contribution, I discuss the basic aspects of radiation-driven winds that might reveal the ultimate difference between WR stars and canonical O-type stars. I discuss the aspects of (i) self-enrichment via CNO elements, (ii) high effective temperatures Teff, (iii) an increase in the helium abundance Y, and finally (iv) the Eddington factor Gamma. Over the last couple of years, we have made a breakthrough in our understanding of Gamma-dependent mass loss, which will have far-reaching consequences for the evolution and fate of the most massive stars in the Universe. Finally, I discuss the prospects for studies of the WR phenomenon in the highest redshift Ly-alpha and He II emitting galaxies.
127 - Pasquale Blasi 2012
The origin of the bulk of cosmic rays (CRs) observed at Earth is the topic of a century long investigation, paved with successes and failures. From the energetic point of view, supernova remnants (SNRs) remain the most plausible sources of CRs up to rigidity ? 10^6-10^7 GV. This confidence somehow resulted in the construction of a paradigm, the so-called SNR paradigm: CRs are accelerated through diffusive shock acceleration in SNRs and propagate diffusively in the Galaxy in an energy dependent way. Qualitative confirmation of the SNR acceleration scenario has recently been provided by gamma ray and X-ray observations. Diffusive propagation in the Galaxy is probed observationally through measurement of the secondary to primary nuclei flux ratios (such as B/C). There are however some weak points in the paradigm, which suggest that we are probably missing some physical ingredients in our models. The theory of diffusive shock acceleration at SNR shocks predicts spectra of accelerated particles which are systematically too hard compared with the ones inferred from gamma ray observations. Moreover, hard injection spectra indirectly imply a steep energy dependence of the diffusion coefficient in the Galaxy, which in turn leads to anisotropy larger than the observed one. Moreover recent measurements of the flux of nuclei suggest that the spectra have a break at rigidity ? 200 GV, which does not sit well with the common wisdom in acceleration and propagation. In this paper I will review these new developments and suggest some possible implications.
122 - A. Roman-Lopes 2010
I report the discovery of two new Galactic Wolf-Rayet stars in Circinus via detection of their C, N and He Near-Infrared emission lines, using ESO-NTT-SOFI archival data. The H- and K-band spectra of WR67a and WR67b, indicate that they are Wolf-Rayet stars of WN6h and WC8 sub-types, respectively. WR67a presents a weak-lined spectrum probably reminiscent of young hydrogen rich main-sequence stars such as WR25 in Car OB1 and HD97950 in NGC3603. Indeed, this conclusion is reinforced by the close morphological match of the WR67a H- and K-band spectra with that for WR21a, a known extremely massive binary system. WR67b is probably a non-dusty WC8 Wolf-Rayet star that has a estimated heliocentric distance of 2.7(0.9) kpc, which for its Galactic coordinates, puts the star probably in the near portion of the Scutum-Centaurus arm.
313 - Ya. N. Istomin 2011
It is shown that the relativistic jet, emitted from the center of the Galaxy during its activity, possessed power and energy spectrum of accelerated protons sufficient to explain the current cosmic rays distribution in the Galaxy. Proton acceleration takes place on the light cylinder surface formed by the rotation of a massive black hole carring into rotation the radial magnetic field and the magnetosphere. Observed in gamma, x-ray and radio bands bubbles above and below the galactic plane can be remnants of this bipolar get. The size of the bubble defines the time of the jets start, $simeq 2.4cdot 10^7$ years ago. The jet worked more than $10^7$ years, but less than $2.4cdot10^7$ years.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا