No Arabic abstract
We investigated the inhomogeneous electronic properties at the surface and interior of VO_{2} thin films that exhibit a strong first-order metal-insulator transition (MIT). Using the crystal structural change that accompanies a VO_{2} MIT, we used bulk-sensitive X-ray diffraction (XRD) measurements to estimate the fraction of metallic volume p^{XRD} in our VO_{2} film. The temperature dependence of the p$^{XRD}$ was very closely correlated with the dc conductivity near the MIT temperature, and fit the percolation theory predictions quite well: $sigma$ $sim$ (p - p_{c})^{t} with t = 2.0$pm$0.1 and p_{c} = 0.16$pm$0.01. This agreement demonstrates that in our VO$_{2}$ thin film, the MIT should occur during the percolation process. We also used surface-sensitive scanning tunneling spectroscopy (STS) to investigate the microscopic evolution of the MIT near the surface. Similar to the XRD results, STS maps revealed a systematic decrease in the metallic phase as temperature decreased. However, this rate of change was much slower than the rate observed with XRD, indicating that the electronic inhomogeneity near the surface differs greatly from that inside the film. We investigated several possible origins of this discrepancy, and postulated that the variety in the strain states near the surface plays an important role in the broad MIT observed using STS. We also explored the possible involvement of such strain effects in other correlated electron oxide systems with strong electron-lattice interactions.
Epitaxial La3/4Ca1/4MnO3/MgO(100) (LCMO) thin films show unusual rhombohedral (R-3c) structure with a new perovskite superstructure due to unique ordering of La and Ca at the A-site positions. Very sharp insulator-metal and para-ferromagnetic phase transitions at temperatures up to TMI ~ TC=295 K were observed. The ordered films were electronically homogeneous down to 1 nm scale as revealed by scanning tunnelling microscopy/spectroscopy. In contrast, orthorhombic and A-site disordered LCMO demonstrate broadened phase transitions as well as mesoscopic phase separation for T<<TC. The unique La/Ca ordering suppresses cation mismatch stress within one super-cell, a~1.55 nm, enhancing electronic homogeneity. Phase separation scenario seems not to be a unique mechanism for CMR as very large CMR=500 % was also observed in A-site ordered films.
High quality hexagon plate-like Na3Bi crystals with large (001) plane surfaces were grown from a molten Na flux. The freshly cleaved crystals were analyzed by low temperature scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES), allowing for the characterization of the three-dimensional (3D) Dirac semimetal (TDS) behavior and the observation of the topological surface states. Landau levels (LL) were observed, and the energy-momentum relations exhibited a linear dispersion relationship, characteristic of the 3D TDS nature of Na3Bi. In transport measurements on Na3Bi crystals the linear magnetoresistance and Shubnikov-de Haas (SdH) quantum oscillations are observed for the first time.
We have observed the spatial inhomogeneity of the electronic structure of a single-crystalline electron-doped EuO thin film with ferromagnetic ordering by employing infrared magneto-optical imaging with synchrotron radiation. The uniform paramagnetic electronic structure changes to a uniform ferromagnetic structure via an inhomogeneous state with decreasing temperature and increasing magnetic field slightly above the ordering temperature. One possibility of the origin of the inhomogeneity is the appearance of magnetic polaron states.
Combining first-principles calculations with a technique for many-body problems, we investigate properties of the transition metal oxide ${rm Sr_{2}VO_{4}}$ from the microscopic point of view. By using the local density approximation (LDA), the high-energy band structure is obtained, while screened Coulomb interactions are derived from the constrained LDA and the GW method. The renormalization of the kinetic energy is determined from the GW method. By these downfolding procedures, an effective Hamiltonian at low energies is derived. Applying the path integral renormalization group method to this Hamiltonian, we obtain ground state properties such as the magnetic and orbital orders. Obtained results are consistent with experiments within available data. We find that ${rm Sr_{2}VO_{4}}$ is close to the metal-insulator transition. Furthermore, because of the coexistence and competition of ferromagnetic and antiferromgnetic exchange interactions in this system, an antiferromagnetic and orbital-ordered state with a nontrivial and large unit cell structure is predicted in the ground state. The calculated optical conductivity shows characteristic shoulder structure in agreement with the experimental results. This suggests an orbital selective reduction of the Mott gap.
Inhomogeneity in the ground state is an intriguing, emergent phenomenon in magnetism. Recently, it has been observed in the magnetostructural channel of the geometrically frustrated $alpha$-NaMnO$_2$, for the first time in the absence of active charge degrees of freedom. Here we report an in-depth numerical and local-probe experimental study of the isostructural sister compound CuMnO$_2$ that emphasizes and provides an explanation for the crucial differences between the two systems. The experimentally verified, much more homogeneous, ground state of the stoichiometric CuMnO$_2$ is attributed to the reduced magnetoelastic competition between the counteracting magnetic-exchange and elastic-energy contributions. The comparison of the two systems additionally highlights the role of disorder and allows an understanding of the puzzling phenomenon of phase separation in uniform antiferromagnets.