Do you want to publish a course? Click here

Gap function symmetry and spin dynamics in electron-doped cuprate superconductor

175   0   0.0 ( 0 )
 Added by Cheng Shi Liu
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

An antiferromagnetic (AF) spin fluctuation induced pairing model is proposed for the electron-doped cuprate superconductors. It suggests that, similar to the hole-doped side, the superconducting gap function is monotonic d_{x^2-y^2}-wave and explains why the observed gap function has a nonmonotonic d_{x^2-y^2}-wave behavior when an AF order is taken into account. Dynamical spin susceptibility is calculated and shown to be in good agreement with the experiment. This gives a strong support to the proposed model.



rate research

Read More

267 - Li Cheng , Shiping Feng 2008
The doping and energy evolution of the magnetic excitations of the electron-doped cuprate superconductor Pr$_{0.88}$LaCe$_{0.12}$CuO$_{4-delta}$ in the superconducting state is studied based on the kinetic energy driven superconducting mechanism. It is shown that there is a broad commensurate scattering peak at low energy, then the resonance energy is located among this low energy commensurate scattering range. This low energy commensurate scattering disperses outward into a continuous ring-like incommensurate scattering at high energy. The theory also predicts a dome shaped doping dependent resonance energy.
Second magnetization peak (SMP) in hole-doped cuprates and iron pnictide superconductors has been widely explored. However, similar feature in the family of electron-doped cuprates is not common. Here, we report the vortex dynamics study in the single crystal of an electron-doped cuprate Pr$_{0.87}$LaCe$_{0.13}$CuO$_4$ superconductor using dc magnetization measurements. A SMP feature in the isothermal $M(H)$ was observed for $H$$parallel$$ab$-planes. On the other hand, no such feature was observed for $H$$parallel$$c$-axis in the crystal. Using magnetic relaxation data, a detailed analysis of activation pinning energy via collective creep theory suggests an elastic to plastic creep crossover across the SMP. Moreover, for $H$$parallel$$ab$, a peak in the temperature dependence of critical current density is also observed near 7 K, which is likely be related to a dimensional crossover (3D-2D) associated to the emergence of Josephson vortices at low temperatures. The anisotropy parameter obtained $gamma$ $approx$ 8-11 indicates the 3D nature of vortex lattice mainly for $H$$parallel$$c$-axis. The $H$-$T$ phase diagrams for $H$$parallel$$c$ and $H$$parallel$$ab$ are presented.
118 - I. Diamant , R. L. Greene , 2009
The tunneling spectra of the electron-doped cuprate Pr_2-xCe_xCuO4 as a function of doping and temperature is reported. We find that the superconducting gap, delta, shows a BCS-like temperature dependence even for extremely low carrier concentrations (studied here for the first time). Moreover, delta follows the doping dependence of Tc, in strong contrast with tunneling studies of hole-doped cuprates. From our results we conclude that there is a single superconducting energy scale in the electron-doped cuprates.
We calculate the quasiparticle dispersion and spectral weight of the quasiparticle that results when a hole is added to an antiferromagnetically ordered CuO$_2$ plane of a cuprate superconductor. We also calculate the magnon contribution to the quasiparticle spectral function. We start from a multiband model for the cuprates considered previously [Nat. Phys. textbf{10}, 951 (2014)]. We map this model and the operator for creation of an O hole to an effective one-band generalized $t-J$ model, without free parameters. The effective model is solved using the state of the art self-consistent Born approximation. Our results reproduce all the main features of experiments. They also reproduce qualitatively the dispersion of the multiband model, giving better results for the intensity near wave vector $(pi,pi)$, in comparison with the experiments. In contrast to what was claimed in [Nat. Phys. textbf{10}, 951 (2014)], we find that spin fluctuations play an essential role in the dynamics of the quasiparticle, and hence in both its weight and dispersion.
72 - O. Ivashko , N. E. Shaik , X. Lu 2017
A resonant inelastic x-ray scattering (RIXS) study of overdamped spin-excitations in slightly underdoped La$_{2-x}$Sr$_{x}$CuO$_4$ (LSCO) with $x=0.12$ and $0.145$ is presented. Three high-symmetry directions have been investigated: (1) the antinodal $(0,0)rightarrow (1/2,0)$, (2) the nodal $(0,0)rightarrow (1/4,1/4)$ and (3) the zone boundary direction $(1/2,0)rightarrow (1/4,1/4)$ connecting these two. The overdamped excitations exhibit strong dispersions along (1) and (3), whereas a much more modest dispersion is found along (2). This is in strong contrast to the undoped compound La$_{2}$CuO$_4$ (LCO) for which the strongest dispersions are found along (1) and (2). The $t-t^{prime}-t^{primeprime}-U$ Hubbard model used to explain the excitation spectrum of LCO predicts $-$ for constant $U/t$ $-$ that the dispersion along (3) scales with $(t^{prime}/t)^2$. However, the diagonal hopping $t^{prime}$ extracted on LSCO using single-band models is low ($t^{prime}/tsim-0.16$) and decreasing with doping. We therefore invoked a two-orbital ($d_{x^2-y^2}$ and $d_{z^2}$) model which implies that $t^{prime}$ is enhanced. This effect acts to enhance the zone-boundary dispersion within the Hubbard model. We thus conclude that hybridization of $d_{x^2-y^2}$ and $d_{z^2}$ states has a significant impact on the zone-boundary dispersion in LSCO.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا