Do you want to publish a course? Click here

Vesicle shape, molecular tilt, and the suppression of necks

115   0   0.0 ( 0 )
 Added by Hongyuan Jiang
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Can the presence of molecular-tilt order significantly affect the shapes of lipid bilayer membranes, particularly membrane shapes with narrow necks? Motivated by the propensity for tilt order and the common occurrence of narrow necks in the intermediate stages of biological processes such as endocytosis and vesicle trafficking, we examine how tilt order inhibits the formation of necks in the equilibrium shapes of vesicles. For vesicles with a spherical topology, point defects in the molecular order with a total strength of $+2$ are required. We study axisymmetric shapes and suppose that there is a unit-strength defect at each pole of the vesicle. The model is further simplified by the assumption of tilt isotropy: invariance of the energy with respect to rotations of the molecules about the local membrane normal. This isotropy condition leads to a minimal coupling of tilt order and curvature, giving a high energetic cost to regions with Gaussian curvature and tilt order. Minimizing the elastic free energy with constraints of fixed area and fixed enclosed volume determines the allowed shapes. Using numerical calculations, we find several branches of solutions and identify them with the branches previously known for fluid membranes. We find that tilt order changes the relative energy of the branches, suppressing thin necks by making them costly, leading to elongated prolate vesicles as a generic family of tilt-ordered membrane shapes.

rate research

Read More

One of the most widely used methods for determination of the bending elasticity modulus of model lipid membranes is the analysis of the shape fluctuations of nearly spherical lipid vesicles. The theoretical basis of this analysis is given by Milner and Safran. In their theory the stretching effects are not considered. In the present study we generalized their approach including the stretching effects deduced after an application of statistical mechanics of vesicles.
114 - I. Bivas , N.S. Tonchev 2014
The mechanical properties of biological membranes play an important role in the structure and the functioning of living organisms. One of the most widely used methods for determination of the bending elasticity modulus of the model lipid membranes (simplified models of the biomembranes with similar mechanical properties) is analysis of the shape fluctuations of the nearly spherical lipid vesicles. A theoretical basis of such an analysis is developed by Milner and Safran. In the present studies we analyze their results using an approach based on the Bogoljubov inequalities and the approximating Hamiltonian method. This approach is in accordance with the principles of statistical mechanics and is free of contradictions. Our considerations validate the results of Milner and Safran if the stretching elasticity K_s of the membrane tends to zero.
Necks are features of lipid membranes characterized by an uniquley large curvature, functioning as bridges between different compartments. These features are ubiquitous in the life-cycle of the cell and instrumental in processes such as division, extracellular vesicles uptake and cargo transport between organelles, but also in life-threatening conditions, as in the endocytosis of viruses and phages. Yet, the very existence of lipid necks challenges our understanding of membranes biophysics: their curvature, often orders of magnitude larger than elsewhere, is energetically prohibitive, even with the arsenal of molecular machineries and signalling pathways that cells have at their disposal. Using a geometric triality, namely a correspondence between three different classes of geometric objects, here we demonstrate that lipid necks are in fact metastable, thus can exist for finite, but potentially long times even in the absence of stabilizing mechanisms. This framework allows us to explicitly calculate the forces a corpuscle must overcome in order to penetrate cellular membranes, thus paving the way for a predictive theory of endo/exo-cytic processes.
Lipid bilayer membranes have a native (albeit small) permeability for water molecules. Under an external load, provided that the bilayer structure stays intact and does not suffer from poration or rupture, a lipid membrane deforms and its water influx/efflux is often assumed negligible in the absence of osmolarity. In this work we use boundary integral simulations to investigate the effects of water permeability on the vesicle hydrodynamics due to a mechanical load, such as the viscous stress from an external flow deforming a vesicle membrane in free space or pushing it through a confinement. Incorporating the membrane permeability into the framework of Helfrich free energy for an inextensible, elastic membrane as a model for a semipermeable vesicle, we illustrate that, in the absence of an osmotic stress gradient, the semipermeable vesicle is affected by water influx/efflux over a sufficiently long time or under a strong confinement. Our simulations quantify the conditions for water permeation to be negligible in terms of the time scales, flow strength, and confinement. These results shed light on how microfluidic confinement can be utilized to estimate membrane permeability.
We carry out a coarse-grained molecular dynamics simulation of phospholipid vesicles with transmembrane proteins. We measure the mean and Gaussian curvatures of our protein-embedded vesicles and quantitatively show how protein clusters change the shapes of their host vesicles. The effects of depletion force and vesiculation on protein clustering are also investigated. By increasing the protein concentration, clusters are fragmented to smaller bundles, which are then redistributed to form more symmetric structures corresponding to lower bending energies. Big clusters and highly aspherical vesicles cannot be formed when the fraction of protein to lipid molecules is large.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا