Do you want to publish a course? Click here

Chiral Plaquette Polaron Theory of Cuprate Superconductivity

119   0   0.0 ( 0 )
 Added by Jamil Tahir-Kheli
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ab-initio density functional calculations on explicitly doped La(2-x)Sr(x)CuO4 find doping creates localized holes in out-of-plane orbitals. A model for superconductivity is developed based on the assumption that doping leads to the formation of holes on a four-site Cu plaquette composed of the out-of-plane A1 orbitals apical O pz, planar Cu dz2, and planar O psigma. This is in contrast to the assumption of hole doping into planar Cu dx2-y2 and O psigma orbitals as in the t-J model. Interaction of holes with the d9 spin background leads to chiral polarons with either a clockwise or anti-clockwise charge current. When the polaron plaquettes percolate through the crystal at x~0.05 for LaSrCuO, a Cu dx2-y2 and planar O psigma band is formed. Spin exchange Coulomb repulsion with chiral polarons leads to D-wave superconductivity. The equivalent of the Debye energy in phonon superconductivity is the maximum energy separation between a chiral polaron and its time-reversed partner. An additive skew-scattering contribution to the Hall effect is induced by chiral polarons and leads to a temperature dependent Hall effect that fits the measured values for LaSrCuO. The integrated imaginary susceptibility satisfies omega/T scaling due to chirality and spin-flip scattering of polarons along with a uniform distribution of polaron energy splittings. The derived functional form is compatible with experiments. The static spin structure factor is computed and is incommensurate with a separation distance from (pi,pi) given by ~(2pi)x. Coulomb scattering of the x2-y2 band with polarons leads to linear resistivity. Coupling of the x2-y2 band to the undoped Cu d9 spins leads to the ARPES pseudogap and its doping and temperature dependence.



rate research

Read More

219 - Amit Keren 2009
A proper understanding of the mechanism for cuprate superconductivity can emerge only by comparing materials in which physical parameters vary one at a time. Here we present a variety of bulk, resonance, and scattering measurements on the (Ca_xLa_{1-x})(Ba_{1.75-x}La_{0.25+x})Cu_3O_y high temperature superconductors, in which this can be done. We determine the superconducting, Neel, glass, and pseudopage critical temperatures. In addition, we clarify which physical parameter varies, and, equally important, which does not, with each chemical modification. This allows us to demonstrate that a single energy scale, set by the superexchange interaction J, controls all the critical temperatures of the system. J, in-turn, is determined by the in plane Cu-O-Cu buckling angle.
66 - Z. Tesanovic 2001
A d-wave superconductor, its phase coherence progressively destroyed by unbinding of vortex-antivortex pairs, suffers an instability related to chiral symmetry breaking in two-flavor QED$_3$. The chiral manifold exhibits large degeneracy spanned by physical states acting as inherent ``competitors of d-wave superconductivity. Two of these states are associated with antiferromagnetic insulator and ``stripe phases, known to be stable in the pseudogap regime of cuprates near half-filling. The theory also predicts additional, yet unobserved state: a d+ip phase-incoherent superconductor.
135 - Guo-meng Zhao 2013
We have calculated the tunneling conductance of a superconductor-insulator-superconductor junction based on the polaron-bipolaron theory of superconductivity. The predicted incoherent hump features are in quantitative agreement with tunneling spectra of optimally doped Bi2Sr2CaCu2O8+y and Bi2Sr2Ca2Cu3O10+y. We further show that angle-resolved photoemission spectra of underdoped cuprates are consistent with the Bose-Einstein condensation of inter-site bipolarons and that the superconducting gap symmetry is d-wave, which is determined by the anomalous kinetic process rather than by the pairing interaction. In the overdoped cuprates (BCS-like superconductors), the superconducting gap symmetry is the same as the pairing symmetry, which is found to be extended s-wave with eight line nodes in hole-doped cuprates and nodeless s-wave in electron-doped cuprates. The polaronic effect significantly enhances the density of states at the Fermi level and the effective electron-phonon coupling constant for low-energy phonon modes, which is the key to the understanding of high-temperature superconductivity.
We report on the phase diagram for charge-stripe order in La(1.6-x)Nd(0.4)Sr(x)CuO(4), determined by neutron and x-ray scattering studies and resistivity measurements. From an analysis of the in-plane resistivity motivated by recent nuclear-quadrupole-resonance studies, we conclude that the transition temperature for local charge ordering decreases monotonically with x, and hence that local antiferromagnetic order is uniquely correlated with the anomalous depression of superconductivity at x = 1/8. This result is consistent with theories in which superconductivity depends on the existence of charge-stripe correlations.
The behaviour of electrons in solids is remarkably well described by Landaus Fermi-liquid theory, which says that even though electrons in a metal interact they can still be treated as well-defined fermions, called ``quasiparticles. At low temperature, the ability of quasiparticles to transport heat is strictly given by their ability to transport charge, via a universal relation known as the Wiedemann-Franz law, which no material in nature has been known to violate. High-temperature superconductors have long been thought to fall outside the realm of Fermi-liquid theory, as suggested by several anomalous properties, but this has yet to be shown conclusively. Here we report on the first experimental test of the Wiedemann-Franz law in a cuprate superconductor, (Pr,Ce)$_2$CuO$_4$. Our study reveals a clear departure from the universal law and provides compelling evidence for the breakdown of Fermi-liquid theory in high-temperature superconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا