Do you want to publish a course? Click here

On the statistics of the minimal solution of a linear Diophantine equation and uniform distribution of the real part of orbits in hyperbolic spaces

89   0   0.0 ( 0 )
 Added by Morten S. Risager
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We study a variant of a problem considered by Dinaburg and Sinai on the statistics of the minimal solution to a linear Diophantine equation. We show that the signed ratio between the Euclidean norms of the minimal solution and the coefficient vector is uniformly distributed modulo one. We reduce the problem to an equidistribution theorem of Anton Good concerning the orbits of a point in the upper half-plane under the action of a Fuchsian group.



rate research

Read More

In 2012, T. Miyazaki and A. Togb{e} gave all of the solutions of the Diophantine equations $(2am-1)^x+(2m)^y=(2am+1)^z$ and $b^x+2^y=(b+2)^z$ in positive integers $x,y,z,$ $a>1$ and $bge 5$ odd. In this paper, we propose a similar problem (which we call the shuffle variant of a Diophantine equation of Miyazaki and Togb{e}). Here we first prove that the Diophantine equation $(2am+1)^x+(2m)^y=(2am-1)^z$ has only the solutions $(a, m, x, y, z)=(2, 1, 2, 1, 3)$ and $(2,1,1,2,2)$ in positive integers $a>1,m,x,y,z$. Then using this result, we show that the Diophantine equation $b^x+2^y=(b-2)^z$ has only the solutions $(b,x, y, z)=(5, 2, 1, 3)$ and $(5,1,2,2)$ in positive integers $x,y,z$ and $b$ odd.
Let $f(x)=x^{2}(x^{2}-1)(x^{2}-2)(x^{2}-3).$ We prove that the Diophantine equation $ f(x)=2f(y)$ has no solutions in positive integers $x$ and $y$, except $(x, y)=(1, 1)$.
50 - Changhao Chen , Xiaohua Wang , 2019
Let $alpha, beta in (0,1)$ such that at least one of them is irrational. We take a random walk on the real line such that the choice of $alpha$ and $beta$ has equal probability $1/2$. We prove that almost surely the $alphabeta$-orbit is uniformly distributed module one, and the exponential sums along its orbit has the square root cancellation. We also show that the exceptional set in the probability space, which does not have the property of uniform distribution modulo one, is large in the terms of topology and Hausdorff dimension.
This work determine the entire family of positive integer solutions of the diophantine equation. The solution is described in terms of $frac{(m-1)(m+n-2)}{2} $ or $frac{(m-1)(m+n-1)}{2}$ positive parameters depending on $n$ even or odd. We find the solution of a diophantine system of equations by using the solution of the diophantine equation. We generalized all the results of the paper [5].
We show that the diophantine equation $n^ell+(n+1)^ell + ...+ (n+k)^ell=(n+k+1)^ell+ ...+ (n+2k)^ell$ has no solutions in positive integers $k,n ge 1$ for all $ell ge 3$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا