Do you want to publish a course? Click here

Is WMAP3 normalization compatible with the X-Ray cluster abundance?

60   0   0.0 ( 0 )
 Added by Gustavo Yepes
 Publication date 2007
  fields Physics
and research's language is English
 Authors Gustavo Yepes




Ask ChatGPT about the research

We present the mass and X-ray temperature functions derived from a sample of more than 15,000 galaxy clusters of the MareNostrum Universe cosmological SPH simulations. In these simulations, we follow structure formation in a cubic volume of 500/h Mpc on a side assuming cosmological parameters consistent with either the first or third year WMAP data and gaussian initial conditions. We compare our numerical predictions with the most recent observational estimates of the cluster X-ray temperature functions and find that the low normalization cosmological model inferred from the 3 year WMAP data results is barely compatible with the present epoch X-ray cluster abundances. We can only reconcile the simulations with the observational data if we assume a normalization of the Mass-Temperature relation which is a factor of 2.5--3 smaller than our non-radiative simulations predict. This deviation seems to be too large to be accounted by the effects of star formation or cooling in the ICM, not taken into account in these simulations.



rate research

Read More

The number density of galaxy clusters provides tight statistical constraints on the matter fluctuation power spectrum normalization, traditionally phrased in terms of sigma_8, the root mean square mass fluctuation in spheres with radius 8 h^-1 Mpc. We present constraints on sigma_8 and the total matter density Omega_m0 from local cluster counts as a function of X-ray temperature, taking care to incorporate and minimize systematic errors that plagued previous work with this method. In particular, we present new determinations of the cluster luminosity - temperature and mass - temperature relations, including their intrinsic scatter, and a determination of the Jenkins mass function parameters for the same mass definition as the mass - temperature calibration. Marginalizing over the 12 uninteresting parameters associated with this method, we find that the local cluster temperature function implies sigma_8 (Omega_m0/0.32)^alpha = 0.86+/-0.04 with alpha = 0.30 (0.41) for Omega_m0 < 0.32 (Omega_mo > 0.32) (68% confidence for two parameters). This result agrees with a wide range of recent independent determinations, and we find no evidence of any additional sources of systematic error for the X-ray cluster temperature function determination of the matter power spectrum normalization. The joint WMAP5 + cluster constraints are: Omega_m0 = 0.30+0.03/-0.02 and sigma_8 = 0.85+0.04/-0.02 (68% confidence for two parameters).
We study numerically the geometrical properties of minimally weighted paths that appear in the negative-weight percolation (NWP) model on two-dimensional lattices assuming a combination of periodic and free boundary conditions (BCs). Each realization of the disorder consists of a random fraction 1-rho of bonds with unit strength and a fraction rho of bond strengths drawn from a Gaussian distribution with zero mean and unit width. For each such sample, the path is forced to span the lattice along the direction with the free BCs. The path and a set of negatively weighted loops form a ground state (GS). A ground state on such a lattice can be determined performing a non-trivial transformation of the original graph and applying sophisticated matching algorithms. Here we examine whether the geometrical properties of the paths are in accordance with predictions of Schramm-Loewner evolution (SLE). Measuring the fractal dimension and reviewing Schramms left passage formula indicates that the paths cannot be described in terms of SLE.
We generalize to elliptical models the argument of Kuijken (1997), which connects the microlensing optical depth towards the Galactic bulge to the Galactic rotation curve. When applied to the latest value from the MACHO collaboration for the optical depth for microlensing of bulge sources, the argument implies that the Galactic bar cannot plausibly reconcile the measured values of the optical depth, the rotation curve and the local mass density. Either there is a problem with the interpretation of the microlensing data, or our line of sight to the Galactic centre is highly atypical in that it passes through a massive structure that wraps only a small distance around the Galactic centre.
We carried out observations of the central and 20 east offset regions of the cluster of galaxies Abell 1060 with Suzaku. Spatially resolved X-ray spectral analysis has revealed temperature and abundance profiles of Abell 1060 out to 27 ~ 380; /h_70 kpc, which corresponded to ~ 0.25; r_180. Temperature decrease of the intra cluster medium from 3.4 keV at the center to 2.2 keV in the outskirt region are clearly observed. Abundances of Si, S and Fe also decrease by more than 50% from the center to the outer, while Mg shows fairly constant abundance distribution at ~ 0.7 solar within r < 17. O shows lower abundance of ~ 0.3 solar in the central region (r~ 6), and indicates a similar feature with Mg, however it is sensitive to the estimated contribution of the Galactic components of kT_1 ~ 0.15 keV and kT_2 ~ 0.7 keV in the outer annuli (r ~ 13). Systematic effects due to the point spread function tails, contamination on the XIS filters, instrumental background, cosmic and/or Galactic X-ray background, and the assumed solar abundance tables are carefully examined. Results on temperature and abundances of Si, S, and Fe are consistent with those derived by XMM-Newton at r < 13. Formation and metal enrichment process of the cluster are discussed based on the present results.
We report the Chandra discovery of an X-ray cluster at redshift z = 1.063 associated with the Compact Steep Spectrum radio loud quasar 3C 186 (Q0740+380). Diffuse X-ray emission is detected out to ~120 kpc from the quasar and contains 741+/-40 net counts. The X-ray spectrum of the extended emission shows strong Fe-line emission (EW=412eV) at the quasar redshift and confirms the thermal nature of this diffuse component. We measure a cluster temperature of 5.2(+1.2/-0.9) keV and an X-ray luminosity L(0.5-2 keV) ~ 6e44 erg/sec, which are in agreement with the luminosity-temperature relation for high-redshift clusters. This is the first detection of a bright X-ray cluster around a luminous (L_bol ~1e47 erg/sec) CSS quasar at high redshift and only the fifth z>1 X-ray cluster detected. We find that the CSS radio source is highly overpressured with respect to the thermal cluster medium by about 3 orders of magnitude. This provides direct observational evidence that the radio source is not thermally confined as posited in the ``frustrated scenario for CSS sources. Instead, it appears that the radio source may be young and we are observing it at an early stage of its evolution. In that case the radio source could supply the energy into the cluster and potentially prevent its cooling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا