Do you want to publish a course? Click here

On the extraction of weak transition strengths via the (3He,t) reaction at 420 MeV

821   0   0.0 ( 0 )
 Added by Remco Zegers
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

Differential cross sections for transitions of known weak strength were measured with the (3He,t) reaction at 420 MeV on targets of 12C, 13C, 18O, 26Mg, 58Ni, 60Ni, 90Zr, 118Sn, 120Sn and 208Pb. Using this data, it is shown the proportionalities between strengths and cross sections for this probe follow simple trends as a function of mass number. These trends can be used to confidently determine Gamow-Teller strength distributions in nuclei for which the proportionality cannot be calibrated via beta-decay strengths. Although theoretical calculations in distorted-wave Born approximation overestimate the data, they allow one to understand the main experimental features and to predict deviations from the simple trends observed in some of the transitions.



rate research

Read More

The 24Mg(3He,t)24Al reaction has been studied at E(3He)=420 MeV. An energy resolution of 35 keV was achieved. Gamow-Teller strengths to discrete levels in 24Al are extracted by using a recently developed empirical relationship for the proportionality between Gamow-Teller strengths and differential cross sections at zero momentum transfer. Except for small discrepancies for a few weak excitations, good agreement with previous 24Mg(p,n) data and nuclear-structure calculations using the USDA/B interactions in the sd shell-model space is found. The excitation energy of several levels in 24Al of significance for determination of the 23Mg(p,gamma)24Al thermonuclear reaction rate were measured. Results are consistent with two of the three previous (3He,t) measurements, performed at much lower beam energies. However, a new state at Ex(24Al)=2.605(10) MeV was found and is the third state above the proton separation energy.
Gamow-Teller transitions from 24Mg to 24Na were studied via the (t,3He) reaction at 115 AMeV using a secondary triton beam produced via fast fragmentation of 150 AMeV 16O ions. Compared to previous (t,3He) experiments at this energy that employed a primary alpha beam, the secondary beam intensity is improved by about a factor of five. Despite the large emittance of the secondary beam, an excitation-energy resolution of ~200 keV is achieved. A good correspondence is found between the extracted Gamow-Teller strength distribution and those available from other charge-exchange probes. Theoretical calculations using the newly developed USDA and USDB sd-shell model interactions reproduce the data well.
Electron capture and beta decay play important roles in the evolution of pre-supernovae stars and their eventual core collapse. These rates are normally predicted through shell-model calculations. Experimentally determined strength distributions from charge-exchange reactions are needed to test modern shell-model calculations. We report on the measurement of the Gamow-Teller strength distribution in 58Co from the 58Ni(t,3He) reaction with a secondary triton beam of an intensity of ~10^6 pps at 115 MeV/nucleon and a resolution of ~250 keV. Previous measurements with the 58Ni(n,p) and the 58Ni(d,2He) reactions were inconsistent with each other. Our results support the latter. We also compare the results to predictions of large-scale shell model calculations using the KB3G and GXPF1 interactions and investigate the impact of differences between the various experiments and theories in terms of the weak rates in the stellar environment. Finally, the systematic uncertainties in the normalization of the strength distribution extracted from 58Ni(3He,t) are described and turn out to be non-negligible due to large interferences between the dL=0, dS=1 Gamow-Teller amplitude and the dL=2, dS=1 amplitude.
Gamow-Teller and dipole transitions to final states in 13B were studied via the 13C(t,3He) reaction at Et = 115 AMeV. Besides the strong Gamow-Teller transition to the 13B ground state, a weaker Gamow-Teller transition to a state at 3.6 MeV was found. This state was assigned a spin-parity of 3/2- by comparison with shell-model calculations using the WBP and WBT interactions which were modified to allow for mixing between nhw and (n+2)hw configurations. This assignment agrees with a recent result from a lifetime measurement of excited states in 13B. The shell-model calculations also explained the relatively large spectroscopic strength measured for a low-lying 1/2+ state at 4.83 MeV in 13B. The cross sections for dipole transitions up to Ex(13B)= 20 MeV excited via the 13C(t,3He) reaction were also compared with the shell-model calculations. The theoretical cross sections exceeded the data by a factor of about 1.8, which might indicate that the dipole excitations are quenched. Uncertainties in the reaction calculations complicate that interpretation.
The cross section for the pd --> ^3He eta pi0 reaction has been measured at a beam energy of 1450 MeV using the WASA detector at the CELSIUS storage ring and detecting one ^3He and four photons from the decays of the two photons. The data indicate that the production mechanism involves the formation of the Delta(1232) isobar. Although the beam energy does not allow the full peak of this resonance to be seen, the invariant masses of all three pairs of final state particles are well reproduced by a phase space Monte Carlo simulation weighted with the p-wave factor of the square of the pi^0 momentum in the ^3Hepi^0 system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا