Do you want to publish a course? Click here

Plasmon dispersion in metal nanoparticle chains from angle-resolved scattering

232   0   0.0 ( 0 )
 Added by Femius Koenderink
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present angle and frequency resolved optical extinction measurements to determine the dispersion relation of plasmon modes on Ag and Au nanoparticle chains with pitches down to 75 nm. The large splitting between transverse and longitudinal modes and the band curvature are inconsistent with reported electrostatic near-field models, and confirm that far-field retarded interactions are important, even for $lambda/5$-sized structures. The data imply that lower propagation losses, larger signal bandwidth and larger maximum group velocity then expected can be achieved for wave vectors below the light line. We conclude that for the design of optical nanocircuits coherent far-field couplings across the entire circuit need to be considered, even at subwavelength feature sizes.



rate research

Read More

205 - Nic Cade , Tom Ritman-Meer , 2008
Highly ordered periodic arrays of silver nanoparticles have been fabricated which exhibit surface plasmon resonances in the visible spectrum. We demonstrate the ability of these structures to alter the fluorescence properties of vicinal dye molecules by providing an additional radiative decay channel. Using fluorescence lifetime imaging microscopy, we have created high resolution spatial maps of the molecular lifetime components; these show an order of magnitude increase in decay rate from a localized volume around the nanoparticles, resulting in a commensurate enhancement in the fluorescence emission intensity. Spatial maps of the Raman scattering signal from molecules on the nanoparticles shows an enhancement of more than 5 orders of magnitude.
Chains of metallic nanoparticles sustain strongly confined surface plasmons with relatively low dielectric losses. To exploit these properties in applications,such as waveguides, the fabrication of long chains of low disorder and a thorough understanding of the plasmon-mode properties, such as dispersion relations, are indispensable. Here, we use a wrinkled template for directed self-assembly to assemble chains of gold nanoparticles. With this up-scalable method, chain lengths from two particles (140 nm) to 20 particles (1500 nm) and beyond can be fabricated. Electron energy-loss spectroscopy supported by boundary element simulations, finite-difference time-domain, and a simplified dipole coupling model reveal the evolution of a band of plasmonic waveguide modes from degenerated single-particle modes in detail. In striking difference from plasmonic rod-like structures, the plasmon band is confined in excitation energy, which allows light manipulations below the diffraction limit. The non-degenerated surface plasmon modes show suppressed radiative losses for efficient energy propagation over a distance of 1500 nm.
Chiral sensitive techniques have been used to probe the fundamental symmetries of the universe, study biomolecular structures, and even develop safe drugs. As chiral signals are inherently weak and often suppressed by large backgrounds, different techniques have been proposed to overcome the limitations of traditionally used chiral polarimetry. Here, we propose an angle-resolved chiral surface plasmon resonance (CHISPR) scheme that can detect the absolute chirality (handedness and magnitude) of a chiral sample and is sensitive to both the real and imaginary part of a chiral samples refractive index. We present analytical results and numerical simulations of CHISPR measurements, predicting signals in the mdeg range for chiral samples of <100nm thickness at visible wavelengths. Moreover, we present a theoretical analysis that clarifies how our far-field measurements elucidate the underlying physics. This CHISPR protocol does not require elaborate fabrication and has the advantage of being directly implementable on existing surface plasmon resonance instrumentation.
We investigate the dispersion of the charge carrier plasmon in the three prototypical charge-density wave bearing transition-metal dichalcogenides 2H-TaSe2, 2H-TaS2 and 2H-NbSe2 employing electron energy-loss spectroscopy. For all three compounds the plasmon dispersion is found to be negative for small momentum transfers. This is in contrast to the generic behavior observed in simple metals as well as the related system 2H-NbS2, which does not exhibit charge order. We present a semiclassical Ginzburg-Landau model which accounts for these observations, and argue that the vicinity to a charge ordered state is thus reflected in the properties of the collective excitations.
A laser-based angle resolved photoemission (APRES) system utilizing 6 eV photons from the fourth harmonic of a mode-locked Ti:sapphire oscillator is described. This light source greatly increases the momentum resolution and photoelectron count rate, while reducing extrinsic background and surface sensitivity relative to higher energy light sources. In this review, the optical system is described, and special experimental considerations for low-energy ARPES are discussed. The calibration of the hemispherical electron analyzer for good low-energy angle-mode performance is also described. Finally, data from the heavily studied high T_c superconductor Bi2Sr2CaCu2O8+delta (Bi2212) is compared to the results from higher photon energies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا