Do you want to publish a course? Click here

X-MAS2: Study Systematics on the ICM Metallicity Measurements

205   0   0.0 ( 0 )
 Added by Elena Rasia
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

(Abridged)The X-ray measurements of the ICM metallicity are becoming more frequent due to the availability of powerful X-ray telescope with excellent spatial and spectral resolutions. The information which can be extracted from the measurements of the alpha-elements, like Oxygen, Magnesium and Silicon with respect to the Iron abundance is extremely important to better understand the stellar formation and its evolutionary history. In this paper we investigate possible source of bias connected to the plasma physics when recovering metal abundances from X-ray spectra. To do this we analyze 6 simulated galaxy clusters processed through the new version of our X-ray MAp Simulator, which allows to create mock XMM-Newton EPIC MOS1 and MOS2 observations. By comparing the spectroscopic results to the input values we find that: i) Fe is recovered with high accuracy for both hot (T>3 keV) and cold (T<2 keV) systems; at intermediate temperatures, however, we find a systematic overestimate which depends on the number counts; ii) O is well recovered in cold clusters, while in hot systems its measure may overestimate by a factor up to 2-3; iii) Being a weak line, the measurement of Mg is always difficult; despite of this, for cold systems (T<2 keV) we do not find any systematic behavior, while for very hot systems (T>5 keV) the spectroscopic measurement may be strongly overestimated up to a factor of 4; iv) Si is well recovered for all the clusters in our sample. We investigate in detail the nature of the systematic effects and biases found. We conclude that they are mainly connected with the multi-temperature nature of the projected observed spectra and to the intrinsic limitation of the XMM-Newton EPIC spectral resolution that does not always allow to disentangle among the emission lines produced by different elements.



rate research

Read More

We present a study on the origin of the metallicity evolution of the intra-cluster medium (ICM) by applying a semi-analytic model of galaxy formation to N-body/SPH (smoothed particle hydrodynamic) non-radiative numerical simulations of clusters of galaxies. The semi-analytic model includes gas cooling, star formation, supernovae feedback and metal enrichment, and is linked to the diffuse gas of the underlying simulations so that the chemical properties of gas particles are dynamically and consistently generated from stars in the galaxies. This hybrid model let us have information on the spatial distribution of metals in the ICM. The results obtained for a set of clusters with virial masses of ~1.5*10^15 h^{-1} M_sun contribute to the theoretical interpretation of recent observational X-ray data, which indicate a decrease of the average iron content of the intra-cluster gas with increasing redshift. We find that this evolution arises mainly as a result of a progressive increase of the iron abundance within ~0.15 R_vir. The clusters have been considerably enriched by z~1 with very low contribution from recent star formation. Low entropy gas that has been enriched at high redshift sinks to the cluster centre contributing to the evolution of the metallicity profiles.
We examine an ensemble of 48 simulated clusters to determine the effects of small-scale density fluctuations and large-scale substructure on X-ray measurements of the intracluster medium (ICM) mass. We measure RMS density fluctuations in the ICM which can be characterized by a mean mass-weighted clumping factor C = <rho^2>/<rho>^2 between 1.3 and 1.4 within a density contrast of 500 times the critical density. These fluctuations arise from the cluster history of accretion shocks and major mergers, and their presence enhances the clusters luminosity relative to the smooth case. We expect, therefore, that ICM mass measurements utilizing models which assume uniform density at a given radius carry a bias of order sqrt(C) = 1.16. We verify this result by performing ICM mass measurements on X-ray images of the simulations and finding the expected level of bias. The varied cluster morphologies in our ensemble also allow us to investigate the effects of departures from spherical symmetry on our measurements. We find that the presence of large-scale substructure does not further bias the resulting gas mass unless it is pronounced enough to produce a second peak in the image of at least 1% the maximum surface brightness. We analyze the subset of images with no secondary peaks and find a bias of 9% and a Gaussian random error of 4% in the derived mass.
With the rapid progress in metallicity gradient studies at high-redshift, it is imperative that we thoroughly understand the systematics in these measurements. This work investigates how the [NII]/Halpha ratio based metallicity gradients change with angular resolution, signal-to-noise (S/N), and annular binning parameters. Two approaches are used: 1. We downgrade the high angular resolution integral-field data of a gravitationally lensed galaxy and re-derive the metallicity gradients at different angular resolution; 2. We simulate high-redshift integral field spectroscopy (IFS) observations under different angular resolution and S/N conditions using a local galaxy with a known gradient. We find that the measured metallicity gradient changes systematically with angular resolution and annular binning. Seeing-limited observations produce significantly flatter gradients than higher angular resolution observations. There is a critical angular resolution limit beyond which the measured metallicity gradient is substantially different to the intrinsic gradient. This critical angular resolution depends on the intrinsic gradient of the galaxy and is < 0.02 arcsec for our simulated galaxy. We show that seeing-limited high-redshift metallicity gradients are likely to be strongly affected by resolution-driven gradient flattening. Annular binning with a small number of annuli produces a more flattened gradient than the intrinsic gradient due to weak line smearing. For 3-annuli bins, a minimum S/N of ~ 5 on the [NII] line is required for the faintest annulus to constrain the gradients with meaningful errors.
56 - D.R. Goncalves 1998
Could the discrepancies found in the determination of mass in clusters of galaxies, from gravitational lensing data and from X-rays observations, be consequence of the standard description of the ICM, in which it is assumed hydrostatic equilibrium maintained by thermal pressure? In analogy to the interstellar medium of the Galaxy, it is expected a non-thermal term of pressure, which contains contributions of magnetic fields. We follow the evolution of the ICM, considering a term of magnetic pressure, aiming at answering the question whether or not these discrepancies can be explained via non-thermal terms of pressure. Our results suggest that the magnetic pressure could only affect the dynamics of the ICM on scales as small as $la 1 {rm kpc}$. These results are compared to the observations of large and small scale magnetic fields and we are successful at reproducing the available data.
We quantify the importance of the mechanical energy released by radio-galaxies inside galaxy groups. We use scaling relations to estimate the mechanical energy released by 16 radio-AGN located inside X-ray detected galaxy groups in the COSMOS field. By comparing this energy output to the host groups gravitational binding energy, we find that radio galaxies produce sufficient energy to unbind a significant fraction of the intra-group medium. This unbinding effect is negligible in massive galaxy clusters with deeper potential wells. Our results correctly reproduce the breaking of self-similarity observed in the scaling relation between entropy and temperature for galaxy groups.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا