Do you want to publish a course? Click here

Spin-glass state of vortices in YBa2Cu3Oy and La2-xSrxCuO4 below the metal-to-insulator crossover

185   0   0.0 ( 0 )
 Added by Jeff E. Sonier
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Highly disordered magnetism confined to individual weakly interacting vortices is detected by muon spin rotation in two different families of high-transition-temperature superconductors, but only in samples on the low-doping side of the low-temperature normal state metal-to-insulator crossover (MIC). The results support an extended quantum phase transition (QPT) theory of competing magnetic and superconducting orders that incorporates the coupling between CuO2 planes. Contrary to what has been inferred from previous experiments, the static magnetism that coexists with superconductivity near the field-induced QPT is not ordered. Our findings unravel the mystery of the MIC and establish that the normal state of high-temperature superconductors is ubiquitously governed by a magnetic quantum critical point in the superconducting phase.



rate research

Read More

57 - S. Wakimoto , S. Ueki , Y. Endoh 1999
Systematic measurements of the magnetic susceptibility were performed on single crystals of lightly doped La2-xSrxCuO4 (x=0.03, 0.04 and 0.05). For all samples the temperature dependence of the in-plane magnetic susceptibility shows typical spin-glass features with spin-glass transition temperatures Tg of 6.3K, 5.5K and 5.0K for x=0.03, 0.04 and 0.05, respectively. The canonical spin-glass order parameter extracted from the in-plane susceptibility of all the samples follows a universal scaling curve. On the other hand, the out-of-plane magnetic susceptibility deviates from Curie law below a temperature Tdv, higher than Tg. Comparing with previous neutron scattering results with an instrumental energy resolution of 0.25 meV from Wakimoto et al., the x-dependence of Tdv is qualitatively the same as that of Tel, the temperature below which the elastic magnetic scattering develops around (pi, pi). Thus, a revised magnetic phase diagram in the lightly doped region of La2-xSrxCuO4 is proposed. The Curie constants calculated from the in-plane susceptibility are independent of the Sr concentration. On the basis of the cluster spin-glass model, this fact might reflect an inhomogeneous distribution of doped holes in the CuO2 plane, such as in a stripe structure.
We report that in YBa2Cu3Oy and La2-xSrxCuO4 there is a spatially inhomogeneous response to magnetic field for temperatures T extending well above the bulk superconducting transition temperature Tc. An inhomogeneous magnetic response is observed above Tc even in ortho-II YBa2Cu3O6.50, which has highly ordered doping. The degree of the field inhomogeneity above Tc tracks the hole doping dependences of both Tc and the density of the superconducting carriers below Tc, and therefore is apparently coupled to superconductivity.
Superconductivity in cuprates peaks in the doping regime between a metal at high p and an insulator at low p. Understanding how the material evolves from metal to insulator is a fundamental and open question. Early studies in high magnetic fields revealed that below some critical doping an insulator-like upturn appears in the resistivity of cuprates at low temperature, but its origin has remained a puzzle. Here we propose that this metal-to-insulator crossover is due to a drop in carrier density n associated with the onset of the pseudogap phase at a critical doping p*. We use high-field resistivity measurements on LSCO to show that the upturns are quantitatively consistent with a drop from n=1+p above p* to n=p below p*, in agreement with high-field Hall data in YBCO. We demonstrate how previously reported upturns in the resistivity of LSCO, YBCO and Nd-LSCO are explained by the same universal mechanism: a drop in carrier density by 1.0 hole per Cu atom.
The individual kparallel and kperp stripe excitations in fluctuating spin-charge stripes have not been observed yet. In Raman scattering if we set, for example, incident and scattered light polarizations to two possible stripe directions, we can observe the fluctuating stripe as if it is static. Using the different symmetry selection rule between the B1g two-magnon scattering and the B1g and B2g isotropic electronic scattering, we succeeded to obtain the kparallel and kperp strip magnetic excitations separately in La2-xSrxCuO4. Only the kperp stripe excitations appear in the wide-energy isotropic electronic Raman scattering, indicating that the charge transfer is restricted to the direction perpendicular to the stripe. This is the same as the Burgers vector of an edge dislocation which easily slides perpendicularly to the stripe. Hence charges at the edge dislocation move together with the dislocation perpendicularly to the stripe, while other charges are localized. A looped edge dislocation has lower energy than a single edge dislocation. The superconducting coherence length is close to the inter-charge stripe distance at x le 0.2. Therefore we conclude that Cooper pairs are formed at looped edge dislocations. The restricted charge transfer direction naturally explains the opening of a pseudogap around (0, {pi}) for the stripe parallel to the b axis and the reconstruction of the Fermi surface to have a flat plane near (0, {pi}). They break the four-fold rotational symmetry. Furthermore the systematic experiments revealed the carrier density dependence of the isotropic and anisotropic electronic excitations, the spin density wave and/or charge density wave gap near ({pi}/2, {pi}/2), and the strong coupling between the electronic states near ({pi}/2, {pi}/2) and the zone boundary phonons at ({pi}, {pi}).
The electromagnetic response to microwaves in the mixed state of YBa2Cu3Oy(YBCO) was measured in order to investigate the electronic state inside and outside the vortex core. The magnetic-field dependence of the complex surface impedance at low temperatures was in good agreement with a general vortex dynamics description assuming that the field-independent viscous damping force and the linear restoring force were acting on the vortices. In other words, both real and imaginary parts of the complex resistivity, rho_1, and rho_2, were linear in B. This is explained by theories for d-wave superconductors. Using analysis based on the Coffey-Clem description of the complex penetration depth, we estimated that the vortex viscosity eta at 10 K was (4 sim 5) times 10^{-7} Ns/m^2. This value corresponds to omega_0 tau sim 0.3 - 0.5, where omega_0 and tau are the minimal gap frequency and the quasiparticle lifetime in the vortex core, respectively. These results suggest that the vortex core in YBCO is in the moderately clean regime. Investigation of the moderately clean vortex core in high-temperature superconductors is significant because physically new effects may be expected due to d-wave characteristics and to the quantum nature of cuprate superconductors. The behavior of Z_s as a function of B across the first order transition (FOT) of the vortex lattice was also investigated. Unlike Bi2Sr2CaCu2Oy (BSCCO), no distinct anomaly was observed around the FOT in YBCO. Our results suggest that the rapid increase of X_s due to the change of superfluid density at the FOT would be observed only in highly anisotropic two-dimensional vortex systems like BSCCO. We discuss these results in terms of the difference of the interlayer coupling and the energy scale between the two materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا