Do you want to publish a course? Click here

A Review of H2CO 6cm Masers in the Galaxy

82   0   0.0 ( 0 )
 Added by Esteban Araya
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a review of the field of formaldehyde (H2CO) 6cm masers in the Galaxy. Previous to our ongoing work, H2CO 6cm masers had been detected in the Galaxy only toward three regions: NGC7538 IRS1, Sgr B2, and G29.96-0.02. Current efforts by our group using the Very Large Array, Arecibo, and the Green Bank Telescope have resulted in the detection of four new H2CO 6cm maser regions. We discuss the characteristics of the known H2CO masers and the association of H2CO 6cm masers with very young regions of massive star formation. We also review the current ideas on the pumping mechanism for H2CO 6cm masers.



rate research

Read More

142 - E. Araya , P. Hofner (1 2007
We report observations of 6cm, 3.6cm, 1.3cm, and 7mm radio continuum, conducted with the Very Large Array towards IRAS18566+0408, one of the few sources known to harbor H2CO 6cm maser emission. Our observations reveal that the emission is dominated by an ionized jet at cm wavelengths. Spitzer/IRAC images from GLIMPSE support this interpretation, given the presence of 4.5um excess emission at approximately the same orientation as the cm continuum. The 7mm emission is dominated by thermal dust from a flattened structure almost perpendicular to the ionized jet, thus, the 7mm emission appears to trace a torus associated with a young massive stellar object. The H2CO 6cm maser is coincident with the center of the torus-like structure. Our observations rule out radiative pumping via radio continuum as the excitation mechanism for the H2CO 6cm maser in IRAS18566+0408.
We have discovered a new H$_2$CO (formaldehyde) $1_{1,0}-1_{1,1}$ 4.82966 GHz maser in Galactic Center Cloud C, G0.38+0.04. At the time of acceptance, this is the eighth region containing an H$_2$CO maser detected in the Galaxy. Cloud C is one of only two sites of confirmed high-mass star formation along the Galactic Center Ridge, affirming that H$_2$CO masers are exclusively associated with high-mass star formation. This discovery led us to search for other masers, among which we found new SiO vibrationally excited masers, making this the fourth star-forming region in the Galaxy to exhibit SiO maser emission. Cloud C is also a known source of CH$_3$OH Class-II and OH maser emission. There are now two known SiO and H$_2$CO maser containing regions in the CMZ, compared to two and six respectively in the Galactic disk, while there is a relative dearth of H$_2$O and CH$_3$OH Class-II masers in the CMZ. SiO and H$_2$CO masers may be preferentially excited in the CMZ, perhaps due to higher gas-phase abundances from grain destruction and heating, or alternatively H$_2$O and CH$_3$OH maser formation may be suppressed in the CMZ. In any case, Cloud C is a new testing ground for understanding maser excitation conditions.
146 - J. L. Han , W. Reich , X. H. Sun 2012
We have finished the 6cm polarization survey of the Galactic plane using the Urumqi 25m radio telescope. It covers 10deg<l<230deg in Galactic longitude and |b| <5deg in Galactic latitude. The new polarization maps not only reveal new properties of the diffuse magnetized interstellar medium, but also are very useful for studying individual objects such as Hii regions, which may act as Faraday screens with strong regular magnetic fields inside, and supernova remnants for their polarization properties and spectra. The high sensitivity of the survey enables us to discover two new SNRs G178.2-4.2 and G25.3-2.1 and a number of Hii regions.
Aims. We seek to understand how the 4.8 GHz formaldehyde absorption line is distributed in the MON R2, S156, DR17/L906, and M17/M18 regions. More specifically, we look for the relationship among the H2CO, 12CO, and 13CO spectral lines. Methods. The four regions of MON R2 (60x90), S156 (50x70), DR17/L906 (40x60), and M17 /M18 (70x80)were observed for H2CO (beam 10), H110a recombination (beam 10), 6 cm continuum (beam 10), 12CO (beam 1), and 13CO (beam 1). We compared the H2CO,12CO,13CO, and continuum distributions, and also the spectra line parameters of H2CO,12CO, and 13CO. Column densities of H2CO,13CO, and H2 were also estimated. Results. We found out that the H2CO distribution is similar to the 12CO and the 13CO distributions on a large scale. The correlation between the 13 CO and the H2CO distributions is better than between the 12CO and H2CO distributions. The H2CO and the 13CO tracers systematically provide consistent views of the dense regions. T heir maps have similar shapes, sizes, peak positions, and molecular spectra and present similar centr al velocities and line widths. Such good agreement indicates that the H2CO and the 13CO arise from similar regions.
H2CO is one of the most readily detected organic molecules in protoplanetary disks. Yet its distribution and dominant formation pathway(s) remain largely unconstrained. To address these issues, we present ALMA observations of two H2CO lines (3_{12}-2_{11} and 5_{15}-4_{14}) at 0.5 (~30 au) spatial resolution toward the disk around the nearby T Tauri star TW Hya. Emission from both lines is spatially resolved, showing a central depression, a peak at 0.4 radius, and a radial decline at larger radii with a bump at ~1, near the millimeter continuum edge. We adopt a physical model for the disk and use toy models to explore the radial and vertical H2CO abundance structure. We find that the observed emission implies the presence of at least two distinct H2CO gas reservoirs: (1) a warm and unresolved inner component (<10 au), and (2) an outer component that extends from ~15 au to beyond the millimeter continuum edge. The outer component is further constrained by the line ratio to arise in a more elevated disk layer at larger radii. The inferred H2CO abundance structure agrees well with disk chemistry models, which predict efficient H2CO gas-phase formation close to the star, and cold H2CO grain surface formation, through H additions to condensed CO, followed by non-thermal desorption in the outer disk. The implied presence of active grain surface chemistry in the TW Hya disk is consistent with the recent detection of CH3OH emission, and suggests that more complex organic molecules are formed in disks, as well.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا