No Arabic abstract
A coarse-grained multi-blob description of polymer solutions is presented, based on soft, transferable effective interactions between bonded and non-bonded blobs. The number of blobs is chosen such that the blob density does not exceed their overlap threshold, allowing polymer concentrations to be explored deep into the semi-dilute regime. This quantitative multi-blob description is shown to preserve known scaling laws of polymer solutions and provides accurate estimates of amplitudes, while leading to orders of magnitude increase of simulation efficiency and allowing analytic calculations of structural and thermodynamic properties.
Understanding confined flows of complex fluids requires simultaneous access to the mechanical behaviour of the liquid and the boundary condition at the interfaces. Here, we use evanescent wave microscopy to investigate near-surface flows of semi-dilute, unentangled polyacrylamide solutions. By using both neutral and anionic polymers, we show that monomer charge plays a key role in confined polymer dynamics. For solutions in contact with glass, the neutral polymers display chain-sized adsorbed layers, while a shear-rate-dependent apparent slip length is observed for anionic polymer solutions. The slip lengths measured at all concentrations collapse onto a master curve when scaled using a simple two-layer depletion model with non-Newtonian viscosity. A transition from an apparent slip boundary condition to a chain-sized adsorption layer is moreover highlighted by screening the charge with additional salt in the anionic polymer solutions. We anticipate that our study will be a starting point for more complex studies relating the polymer dynamics at interfaces to their chemical and physical composition.
We study the relaxation dynamics of a coarse-grained polymer chain at different degrees of stretching by both analytical means and numerical simulations. The macromolecule is modelled as a string of beads, connected by anharmonic springs, subject to a tensile force applied at the end monomer of the chain while the other end is fixed at the origin of coordinates. The impact of bond non-linearity on the relaxation dynamics of the polymer at different degrees of stretching is treated analytically within the Gaussian self-consistent approach (GSC) and then compared to simulation results derived from two different methods: Monte-Carlo (MC) and Molecular Dynamics (MD). At low and medium degrees of chain elongation we find good agreement between GSC predictions and the Monte-Carlo simulations. However, for strongly stretched chains the MD method, which takes into account inertial effects, reveals two important aspects of the nonlinear interaction between monomers: (i) a coupling and energy transfer between the damped, oscillatory normal modes of the chain, and (ii) the appearance of non-vanishing contributions of a continuum of frequencies around the characteristic modes in the power spectrum of the normal mode correlation functions.
We present a comprehensive investigation of polymer diffusion in the semidilute regime by fluorescence correlation spectroscopy (FCS) and dynamic light scattering (DLS). Using single-labeled polystyrene chains, FCS leads to the self-diffusion coefficient while DLS gives the cooperative diffusion coefficient for exactly the same molecular weights and concentrations. Using FCS we observe a new fast mode in the semidilute entangled concentration regime beyond the slower mode which is due to self-diffusion. Comparison of FCS data with data obtained by DLS on the same polymers shows that the second mode observed in FCS is identical to the cooperative diffusion coefficient measured with DLS. An in-depth analysis and a comparison with current theoretical models demonstrates that the new cooperative mode observed in FCS is due to the effective long-range interaction of the chains through the transient entanglement network.
Using Langevin dynamics simulations, we investigate the dynamics of chaperone-assisted translocation of a flexible polymer through a nanopore. We find that increasing the binding energy $epsilon$ between the chaperone and the chain and the chaperone concentration $N_c$ can greatly improve the translocation probability. Particularly, with increasing the chaperone concentration a maximum translocation probability is observed for weak binding. For a fixed chaperone concentration, the histogram of translocation time $tau$ has a transition from long-tailed distribution to Gaussian distribution with increasing $epsilon$. $tau$ rapidly decreases and then almost saturates with increasing binding energy for short chain, however, it has a minimum for longer chains at lower chaperone concentration. We also show that $tau$ has a minimum as a function of the chaperone concentration. For different $epsilon$, a nonuniversal dependence of $tau$ on the chain length $N$ is also observed. These results can be interpreted by characteristic entropic effects for flexible polymers induced by either crowding effect from high chaperone concentration or the intersegmental binding for the high binding energy.
We investigate the ejection dynamics of a ring polymer out of a cylindrical nanochannel using both theoretical analysis and three dimensional Langevin dynamics simulations. The ejection dynamics for ring polymers shows two regimes like for linear polymers, depending on the relative length of the chain compared with the channel. For long chains with length $N$ larger than the critical chain length $N_{c}$, at which the chain just fully occupies the nanochannel, the ejection for ring polymers is faster compared with linear chains of identical length due to a larger entropic pulling force; while for short chains ($N<N_c$), it takes longer time for ring polymers to eject out of the channel due to a longer distance to be diffused to reach the exit of the channel before experiencing the entropic pulling force. These results can help understand many biological processes, such as bacterial chromosome segregation.