Do you want to publish a course? Click here

Intrinsic optical bistability of thin films of linear molecular aggregates: The one-exciton approximation

157   0   0.0 ( 0 )
 Added by Victor Malyshev
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform a theoretical study of the nonlinear optical response of an ultrathin film consisting of oriented linear aggregates. A single aggregate is described by a Frenkel exciton Hamiltonian with uncorrelated on-site disorder. The exciton wave functions and energies are found exactly by numerically diagonalizing the Hamiltonian. The principal restriction we impose is that only the optical transitions between the ground state and optically dominant states of the one-exciton manifold are considered, whereas transitions to other states, including those of higher exciton manifolds, are neglected. The optical dynamics of the system is treated within the framework of truncated optical Maxwell-Bloch equations in which the electric polarization is calculated by using a joint distribution of the transition frequency and the transition dipole moment of the optically dominant states. This function contains all the statistical information about these two quantities that govern the optical response, and is obtained numerically by sampling many disorder realizations. We derive a steady-state equation that establishes a relationship between the output and input intensities of the electric field and show that within a certain range of the parameter space this equation exhibits a three-valued solution for the output field. A time-domain analysis is employed to investigate the stability of different branches of the three-valued solutions and to get insight into switching times. We discuss the possibility to experimentally verify the bistable behavior.



rate research

Read More

We show that the third-order optical response of disordered linear J-aggregates can be calculated by considering only a limited number of transitions between (multi-) exciton states. We calculate the pump-probe absorption spectrum resulting from the truncated set of transitions and show that, apart from the blue wing of the induced absorption peak, it agrees well with the exact spectrum.
162 - C.C. Bof Bufon , T. Heinzel 2007
The electronic transport in polypyrrole thin films synthesized chemically from the vapor phase is studied as a function of temperature as well as of electric and magnetic fields. We find distinct differences in comparison to the behavior of both polypyrrole films prepared by electrochemical growth as well as of the bulk films obtained from conventional chemical synthesis. For small electric fields F, a transition from Efros-Shklovskii variable range hopping to Arrhenius activated transport is observed at 30 K. High electric fields induce short range hopping. The characteristic hopping distance is found to be proportional to F^(-1/2). The magnetoresistance R(B) is independent of F below a critical magnetic field, above which F counteracts the magnetic field induced localization.
102 - P. Paruch 2004
Atomic force microscopy was used to investigate ferroelectric switching and nanoscale domain dynamics in epitaxial PbZr0.2Ti0.8O3 thin films. Measurements of the writing time dependence of domain size reveal a two-step process in which nucleation is followed by radial domain growth. During this growth, the domain wall velocity exhibits a v ~ exp[-(1/E)^mu] dependence on the electric field, characteristic of a creep process. The domain wall motion was analyzed both in the context of stochastic nucleation in a periodic potential as well as the canonical creep motion of an elastic manifold in a disorder potential. The dimensionality of the films suggests that disorder is at the origin of the observed domain wall creep. To investigate the effects of changing the disorder in the films, defects were introduced during crystal growth (a-axis inclusions) or by heavy ion irradiation, producing films with planar and columnar defects, respectively. The presence of these defects was found to significantly decrease the creep exponent mu, from 0.62 - 0.69 to 0.38 - 0.5 in the irradiated films and 0.19 - 0.31 in the films containing a-axis inclusions.
The study of energy harvesting in chain-like structures is important due to its relevance to a variety of interesting physical systems. Harvesting is understood as the combination of exciton transport through intra-band exciton relaxation (via scattering on phonon modes) and subsequent quenching by a trap. Previously, we have shown that in the low temperature limit different harvesting scenarios as a function of the applied bias strength (slope of the energy gradient towards the trap) are possible cite{Vlaming07}. This paper generalizes the results for both homogeneous and disordered chains to nonzero temperatures. We show that thermal effects are appreciable only for low bias strengths, particularly so in disordered systems, and lead to faster harvesting.
We predict the existence of exchange broadening of optical lineshapes in disordered molecular aggregates and a nonuniversal disorder scaling of the localization characteristics of the collective electronic excitations (excitons). These phenomena occur for heavy-tailed Levy disorder distributions with divergent second moments - distributions that play a role in many branches of physics. Our results sharply contrast with aggregate models commonly analyzed, where the second moment is finite. They bear a relevance for other types of collective excitations as well.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا