No Arabic abstract
We study the high-power asymptotic behavior of the sum-rate capacity of multi-user interference networks with an equal number of transmitters and receivers. We assume that each transmitter is cognizant of the message it wishes to convey to its corresponding receiver and also of the messages that a subset of the other transmitters wish to send. The receivers are assumed not to be able to cooperate in any way so that they must base their decision on the signal they receive only. We focus on the networks pre-log, which is defined as the limiting ratio of the sum-rate capacity to half the logarithm of the transmitted power. We present both upper and lower bounds on the networks pre-log. The lower bounds are based on a linear partial-cancellation scheme which entails linearly transforming Gaussian codebooks so as to eliminate the interference in a subset of the receivers. Inter alias, the bounds give a complete characterization of the networks and side-information settings that result in a full pre-log, i.e., in a pre-log that is equal to the number of transmitters (and receivers) as well as a complete characterization of networks whose pre-log is equal to the full pre-log minus one. They also fully characterize networks where the full pre-log can only be achieved if each transmitter knows the messages of all users, i.e., when the side-information is full.
We employ Permutation Trellis Code (PTC) based multi-level Frequency Shift Keying signaling to mitigate the impact of Primary Users (PUs) on the performance of Secondary Users (SUs) in Cognitive Radio Networks (CRNs). The PUs are assumed to be dynamic in that they appear intermittently and stay active for an unknown duration. Our approach is based on the use of PTC combined with multi-level FSK modulation so that an SU can improve its data rate by increasing its transmission bandwidth while operating at low power and not creating destructive interference for PUs. We evaluate system performance by obtaining an approximation for the actual Bit Error Rate (BER) using properties of the Viterbi decoder and carry out a thorough performance analysis in terms of BER and throughput. The results show that the proposed coded system achieves i) robustness by ensuring that SUs have stable throughput in the presence of heavy PU interference and ii) improved resiliency of SU links to interference in the presence of multiple dynamic PUs.
We consider a cognitive network consisting of n random pairs of cognitive transmitters and receivers communicating simultaneously in the presence of multiple primary users. Of interest is how the maximum throughput achieved by the cognitive users scales with n. Furthermore, how far these users must be from a primary user to guarantee a given primary outage. Two scenarios are considered for the network scaling law: (i) when each cognitive transmitter uses constant power to communicate with a cognitive receiver at a bounded distance away, and (ii) when each cognitive transmitter scales its power according to the distance to a considered primary user, allowing the cognitive transmitter-receiver distances to grow. Using single-hop transmission, suitable for cognitive devices of opportunistic nature, we show that, in both scenarios, with path loss larger than 2, the cognitive network throughput scales linearly with the number of cognitive users. We then explore the radius of a primary exclusive region void of cognitive transmitters. We obtain bounds on this radius for a given primary outage constraint. These bounds can help in the design of a primary network with exclusive regions, outside of which cognitive users may transmit freely. Our results show that opportunistic secondary spectrum access using single-hop transmission is promising.
A new form of multiuser diversity, named emph{multiuser interference diversity}, is investigated for opportunistic communications in cognitive radio (CR) networks by exploiting the mutual interference between the CR and the existing primary radio (PR) links. The multiuser diversity gain and ergodic throughput are analyzed for different types of CR networks and compared against those in the conventional networks without the PR link.
An interference alignment example is constructed for the deterministic channel model of the $K$ user interference channel. The deterministic channel example is then translated into the Gaussian setting, creating the first known example of a fully connected Gaussian $K$ user interference network with single antenna nodes, real, non-zero and contant channel coefficients, and no propagation delays where the degrees of freedom outerbound is achieved. An analogy is drawn between the propagation delay based interference alignment examples and the deterministic channel model which also allows similar constructions for the 2 user $X$ channel as well.
Spectrum sensing is an essential enabling functionality for cognitive radio networks to detect spectrum holes and opportunistically use the under-utilized frequency bands without causing harmful interference to legacy networks. This paper introduces a novel wideband spectrum sensing technique, called multiband joint detection, which jointly detects the signal energy levels over multiple frequency bands rather than consider one band at a time. The proposed strategy is efficient in improving the dynamic spectrum utilization and reducing interference to the primary users. The spectrum sensing problem is formulated as a class of optimization problems in interference limited cognitive radio networks. By exploiting the hidden convexity in the seemingly non-convex problem formulations, optimal solutions for multiband joint detection are obtained under practical conditions. Simulation results show that the proposed spectrum sensing schemes can considerably improve the system performance. This paper establishes important principles for the design of wideband spectrum sensing algorithms in cognitive radio networks.