Do you want to publish a course? Click here

Classical Cepheid Pulsation Models. XI. Effects of convection and chemical composition on the Period-Luminosity and Period-Wesenheit relations

230   0   0.0 ( 0 )
 Added by Giuliana Fiorentino
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

In spite of the relevance of Classical Cepheids as primary distance indicators, a general consensus on the dependence of the Period-Luminosity (PL) relation on the Cepheid chemical composition has not been achieved yet. From the theoretical point of view, our previous investigations were able to reproduce some empirical tests for suitable assumptions on the helium to metal relative enrichment, but those results relied on specific assumptions concerning the Mass-Luminosity relation and the efficiency of the convective transfer in the pulsating envelopes. In this paper, we investigate the effects of the assumed value of the mixing length parameter l/Hp on the pulsation properties and we release the assumption of a fixed Mass-Luminosity relation. As a whole, we show that our pulsation relations appear fully consistent with the observed properties of Galactic and Magellanic Cloud Cepheids, supporting the predicted steepening and brightening of the PL relations when moving from metal-rich to metal-poor variables. Moreover, we show that the distances inferred by the predicted PW relations agree with recently measured trigonometric parallaxes, whereas they suggest a correction to the values based on the Infrared Surface Brightness technique, as already found from an independent method. Finally, also the pulsation metal contents suggested by the predicted PW relations appear in statistical agreement with spectroscopic [Fe/H] measurements.



rate research

Read More

The dependency of the Cepheid Period-Luminosity Relation on chemical composition at different wavelengths is assessed via direct detailed abundance analysis of Galactic and Magellanic Cepheids, as derived from high resolution, high signal-to-noise spectra. Our measurements span one order of magnitude in iron content and allow to rule out at the ~ 9 sigma level the universality of the Period-Luminosity Relation in the V band, with metal rich stars being fainter than metal poor ones by ~0.3 mag. The dependency is less pronounced in the K band. Its magnitude and statistical significance decisively depend on detailed distance measurements to individual stars, as inferred via the Infrared Surface Brightness Method.
210 - L. Inno 2012
We present the largest near-infrared (NIR) data sets, $JHKs$, ever collected for classical Cepheids in the Magellanic Clouds (MCs). We selected fundamental (FU) and first overtone (FO) pulsators, and found 4150 (2571 FU, 1579 FO) Cepheids for Small Magellanic Cloud (SMC) and 3042 (1840 FU, 1202 FO) for Large Magellanic Cloud (LMC). Current sample is 2--3 times larger than any sample used in previous investigations with NIR photometry. We also discuss optical $VI$ photometry from OGLE-III. NIR and optical--NIR Period-Wesenheit (PW) relations are linear over the entire period range ($0.0<log P_{rm FU} le1.65 $) and their slopes are, within the intrinsic dispersions, common between the MCs. These are consistent with recent results from pulsation models and observations suggesting that the PW relations are minimally affected by the metal content. The new FU and FO PW relations were calibrated using a sample of Galactic Cepheids with distances based on trigonometric parallaxes and Cepheid pulsation models. By using FU Cepheids we found a true distance moduli of $18.45pm0.02{rm(random)}pm0.10{rm(systematic)}$ mag (LMC) and $18.93pm0.02{rm(random)}pm0.10{rm(systematic)}$ mag (SMC). These estimates are the weighted mean over ten PW relations and the systematic errors account for uncertainties in the zero-point and in the reddening law. We found similar distances using FO Cepheids ($18.60pm0.03{rm(random)}pm0.10{rm(systematic)}$ mag [LMC] and $19.12pm0.03{rm(random)}pm0.10{rm(systematic)}$ mag [SMC]). These new MC distances lead to the relative distance, $Deltamu=0.48pm0.03$ mag (FU, $log P=1$) and $Deltamu=0.52pm0.03$ mag (FO, $log P=0.5$),which agrees quite well with previous estimates based on robust distance indicators.
101 - S. Kanbur 2007
Period-colour (PC) and amplitude-colour (AC) relations at maximum, mean and minimum light are constructed from a large grid of full amplitude hydrodynamic models of Cepheids with a composition appropriate for the SMC (Small Magellanic Cloud). We compare these theoretical relations with those from observations. The theoretical relations are in general good agreement with their observational counterparts though there exist some discrepancy for short period (log [P] < 1) Cepheids. We outline a physical mechanism which can, in principle, be one factor to explain the observed PC/AC relations for the long and short period Cepheids in the Galaxy, LMC and SMC. Our explanation relies on the hydrogen ionization front-photosphere interaction and the way this interaction changes with pulsation period, pulsation phase and metallicity. Since the PC relation is connected with the period-luminosity (PL) relation, it is postulated that such a mechanism can also explain the observed properties of the PL relation in these three galaxies.
107 - C. Ngeow 2007
In this paper we derive semi-empirical Cepheid period-luminosity (P-L) relations in the Sloan ugriz magnitudes by combining the observed BVI mean magnitudes from the Large Magellanic Cloud Cepheids (LMC) and theoretical bolometric corrections. We also constructed empirical gr band P-L relations, using the publicly available Johnson-Sloan photometric transformations, to be compared with our semi-empirical P-L relations. These two sets of P-L relations are consistent with each other.
We have assessed the influence of the stellar iron content on the Cepheid Period-Luminosity (PL) relation by relating the V band residuals from the Freedman et al (2001) PL relation to [Fe/H] for 37 Galactic and Magellanic Clouds Cepheids. The iron abundances were measured from FEROS and UVES high-resolution and high-signal to noise optical spectra. Our data indicate that the stars become fainter as metallicity increases, until a plateau or turnover point is reached at about solar metallicity. Our data are incompatible with both no dependence of the PL relation on iron abundance, and with the linearly decreasing behavior often found in the literature (e.g. Kennicutt et al 1998, Sakai et al 2004). On the other hand, non-linear theoretical models of Fiorentino et al (2002) provide a fairly good description of the data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا