No Arabic abstract
In birds, the link between parental care behaviour and prolactin release during incubation persists after hatching in altricial birds, but has never been precisely studied during the whole rearing period in precocial species, such as ducks. The present study aims to understand how changes in parental care after hatching are related to circulating prolactin levels in mallard hens rearing ducklings. Blood was sampled in hens over at least 13 post-hatching weeks and the behaviour of the hens and the ducklings was recorded daily until fledging. Contacts between hens and the ducklings, leadership of the ducklings and gathering of them steadily decreased over post-hatching time. Conversely, resting, preening and agonistic behaviour of hens towards ducklings increased. Plasma prolactin concentrations remained at high levels after hatching and then fell after week 6 when body mass and structural size of the young were close to those of the hen. Parental care behaviour declined linearly with brood age, showed a disruption of the hen-brood bond at week 6 post-hatching and was related to prolactin concentration according to a sigmoid function. Our results suggest that a definite threshold in circulating prolactin is necessary to promote and/or to maintain post-hatching parental care in ducks.
Improved monitoring and associated inferential tools to efficiently identify declining bird populations, particularly of rare or sparsely distributed species, is key to informed conservation and management across large spatio-temporal regions. We assess abundance trends for 106 bird species in a network of eight national park forests located within the northeast USA from 2006-2019 using a novel hierarchical model. We develop a multi-species, multi-region removal sampling model that shares information across species and parks to enable inference on rare species and sparsely sampled parks and to evaluate the effects of local forest structure. Trends in bird abundance over time varied widely across parks, but species showed similar trends within parks. Three parks (Acadia, Marsh-Billings-Rockefeller, and Morristown) decreased in bird abundance across all species, while three parks (Saratoga, Roosevelt-Vanderbilt, and Weir-Farm) increased in abundance. Bird abundance peaked at medium levels of basal area and high levels of percent forest and forest regeneration, with percent forest having the largest effect. Variation in these effects across parks could be a result of differences in forest structural stage and diversity. Our novel hierarchical model enables estimates of abundance at the network, park, guild, and species levels. We found large variation in abundance trends across parks but not across bird guilds, suggesting that local forest condition may have a broad and consistent effect on the entire bird community within a given park. Management should target the three parks with overall decreasing trends in bird abundance to further identify what specific factors are driving observed declines across the bird community. Understanding how bird communities respond to local forest structure and other stressors is crucial for informed and lasting management.
Background: In the United States, 5.7 million patients are admitted annually to intensive care units (ICU), with costs exceeding $82 billion. Although close monitoring and dynamic assessment of patient acuity are key aspects of ICU care, both are limited by the time constraints imposed on healthcare providers. Methods: Using the University of Florida Health (UFH) Integrated Data Repository as Honest Broker, we created a database with electronic health records data from a retrospective study cohort of 38,749 adult patients admitted to ICU at UF Health between 06/01/2014 and 08/22/2019. This repository includes demographic information, comorbidities, vital signs, laboratory values, medications with date and timestamps, and diagnoses and procedure codes for all index admission encounters as well as encounters within 12 months prior to index admission and 12 months follow-up. We developed algorithms to identify acuity status of the patient every four hours during each ICU stay. Results: We had 383,193 encounters (121,800 unique patients) admitted to the hospital, and 51,073 encounters (38,749 unique patients) with at least one ICU stay that lasted more than four hours. These patients requiring ICU admission had longer median hospital stay (7 days vs. 1 day) and higher in-hospital mortality (9.6% vs. 0.4%) compared with those not admitted to the ICU. Among patients who were admitted to the ICU and expired during hospital admission, more deaths occurred in the ICU than on general hospital wards (7.4% vs. 0.8%, respectively). Conclusions: We developed phenotyping algorithms that determined patient acuity status every four hours while admitted to the ICU. This approach may be useful in developing prognostic and clinical decision-support tools to aid patients, caregivers, and providers in shared decision-making processes regarding resource use and escalation of care.
Bird collisions with high-speed transport modes is a vital topic on vehicle safety and wildlife protection, especially when high-speed trains, with an average speed of 250km/h, have to run across the habitat of an endangered bird species. This paper evaluates the bird-train collision risk associated with a recent high-speed railway project in Qinling Mountains, China, for the crested ibis (Nipponia nippon) and other local bird species. Using line transect surveys and walking monitoring techniques, we surveyed the population abundance, spatial-temporal distributions, and bridge-crossing behaviors of the birds in the study area. The results show that: (1) The crested ibis and the egret were the two most abundant waterfowl species in the study area. The RAI of these two species were about 43.69% and 42.91%, respectively; (2) Crested ibises overall habitat closer to the railway bridge. 91.63% of them were firstly detected within the range of 0m to 25m of the vicinity of the bridge; (3) the ratio between crossing over and under the railway bridge was about 7:3. Crested ibises were found to prefer to fly over the railway bridge (89.29% of the total crossing activities observed for this species). Egrets were more likely to cross the railway below the bridge, and they accounted for 60.27% of the total observations of crossing under the bridge. We recommend that, while the collision risk of crested ibises could be low, barrier-like structures, such as fences, should still be considered to promote the conservation of multiple bird species in the area. This paper provides a practical case for railway ecology studies in China. To our best knowledge, this is the first high-speed railway project that takes protecting crested ibises as one of the top priorities, and exemplifies the recent nationwide initiative towards the construction of eco-civilization in the country.
Dynamic equilibrium is maintained by counter-regulating elements in living systems. The pancreatic {alpha} and {beta} cells produce glucagon and insulin for glucose homeostasis. They exist in multiple micro-organs, the islets of Langerhans, not in a single gigantic organ, in which the two reciprocal cells interact to each other, and also with an additional cell type, {delta} cell. We found that the positive/negative interactions between the islet cells are designed not only to reduce the wasteful zero-sum action of glucagon and insulin, but also to enhance/suppress synchronization of hormone secretions between islets under high/normal glucose conditions. Thus we suggest that the anti-symmetric interaction between three cell populations can organize an effective network motif for controlling network synchronization.
The resurgence of measles is largely attributed to the decline in vaccine adoption and the increase in mobility. Although the vaccine for measles is readily available and highly successful, its current adoption is not adequate to prevent epidemics. Vaccine adoption is directly affected by individual vaccination decisions, and has a complex interplay with the spatial spread of disease shaped by an underlying mobility (travelling) network. In this paper, we model the travelling connectivity as a scale-free network, and investigate dependencies between the networks assortativity and the resultant epidemic and vaccination dynamics. In doing so we extend an SIR-network model with game-theoretic components, capturing the imitation dynamics under a voluntary vaccination scheme. Our results show a correlation between the epidemic dynamics and the networks assortativity, highlighting that networks with high assortativity tend to suppress epidemics under certain conditions. In highly assortative networks, the suppression is sustained producing an early convergence to equilibrium. In highly disassortative networks, however, the suppression effect diminishes over time due to scattering of non-vaccinating nodes, and frequent switching between the predominantly vaccinating and non-vaccinating phases of the dynamics.