No Arabic abstract
We discuss the character of states near the Fermi level in Mn doped GaAs, as revealed by a survey of dc transport and optical studies over a wide range of Mn concentrations. A thermally activated valence band contribution to dc transport, a mid-infrared peak at energy hbar omega approx 200 meV in the ac- conductivity, and the hot photoluminescence spectra indicate the presence of an impurity band in low doped (<<1% Mn) insulating GaAs:Mn materials. Consistent with the implications of this picture, both the impurity band ionization energy inferred from the dc transport and the position of the mid-infrared peak move to lower energies and the peak broadens with increasing Mn concentration. In metallic materials with > 2% doping, no traces of Mn-related activated contribution can be identified in dc-transport, suggesting that the impurity band has merged with the valence band. No discrepancies with this perception are found when analyzing optical measurements in the high-doped GaAs:Mn. A higher energy (hbar omega approx 250 meV) mid-infrared feature which appears in the metallic samples is associated with inter-valence band transitions. Its red-shift with increased doping can be interpreted as a consequence of increased screening which narrows the localized-state valence-band tails and weakens higher energy transition amplitudes. Our examination of the dc and ac transport characteristics of GaAs:Mn is accompanied by comparisons with its shallow acceptor counterparts, confirming the disordered valence band picture of high-doped metallic GaAs:Mn material.
We analyze microscopically the valence and impurity band models of ferromagnetic (Ga,Mn)As. We find that the tight-binding Anderson approach with conventional parameterization and the full potential LDA+U calculations give a very similar picture of states near the Fermi energy which reside in an exchange-split sp-d hybridized valence band with dominant orbital character of the host semiconductor; this microscopic spectral character is consistent with the physical premise of the k.p kinetic-exchange model. On the other hand, the various models with a band structure comprising an impurity band detached from the valence band assume mutually incompatible microscopic spectral character. By adapting the tight-binding Anderson calculations individually to each of the impurity band pictures in the single Mn impurity limit and then by exploring the entire doping range we find that a detached impurity band does not persist in any of these models in ferromagnetic (Ga,Mn)As.
We report high-resolution hard x-ray photoemission spectroscopy results on (Ga,Mn)As films as a function of Mn doping. Supported by theoretical calculations we identify, over the entire 1% to 13% Mn doping range, the electronic character of the states near the top of the valence band. Magnetization and temperature dependent core-level photoemission spectra reveal how the delocalized character of the Mn states enables the bulk ferromagnetic properties of (Ga,Mn)As.
Comment on the recent Nature Materials article by M. Dobrowolska et al., arXiv:1203.1852. We present experimental data showing that the Curie temperature and conductivity of high quality (Ga,Mn)As samples are maximized at low compensation, and thus the magnetic order in (Ga,Mn)As is not consistent with the isolated impurity band scenario.
The ferromagnetic semiconductor (Ga,Mn)As has emerged as the most studied material for prototype applications in semiconductor spintronics. Because ferromagnetism in (Ga,Mn)As is hole-mediated, the nature of the hole states has direct and crucial bearing on its Curie temperature TC. It is vigorously debated, however, whether holes in (Ga,Mn)As reside in the valence band or in an impurity band. In this paper we combine results of channeling experiments, which measure the concentrations both of Mn ions and of holes relevant to the ferromagnetic order, with magnetization, transport, and magneto-optical data to address this issue. Taken together, these measurements provide strong evidence that it is the location of the Fermi level within the impurity band that determines TC through determining the degree of hole localization. This finding differs drastically from the often accepted view that TC is controlled by valence band holes, thus opening new avenues for achieving higher values of TC.
(Ga,Mn)As is a paradigm diluted magnetic semiconductor which shows ferromagnetism induced by doped hole carriers. With a few controversial models emerged from numerous experimental and theoretical studies, the mechanism of the ferromagnetism in (Ga,Mn)As still remains a puzzling enigma. In this Letter, we use soft x-ray angle-resolved photoemission spectroscopy to positively identify the ferromagnetic Mn 3d-derived impurity band in (Ga,Mn)As. The band appears hybridized with the light-hole band of the host GaAs. These findings conclude the picture of the valence band structure of (Ga,Mn)As disputed for more than a decade. The non-dispersive character of the IB and its location in vicinity of the valence-band maximum indicate that the Mn 3d-derived impurity band is formed as a split-off Mn-impurity state predicted by the Anderson impurity model. Responsible for the ferromagnetism in (Ga,Mn)As is the transport of hole carriers in the impurity band.